Die Antennen erforschen

In der Mitte sind zwei Galaxien eng beisammen, nach links und rechts sind zwei Schweife aus Sternen in Bögen hinausgeschleudert.

Bildcredit: Subaru, NAOJ, NASA/ESA/Hubble, R.W. Olsen – Bearbeitung: Federico Pelliccia und Rolf Wahl Olsen

Im südlichen Sternbild Rabe kollidieren zwei große Galaxien. Sie sind ungefähr 60 Millionen Lichtjahre entfernt und als NGC 4038 und NGC 4039 katalogisiert. Die schwerfällige, gewaltige Umwälzung dauert Hunderte Millionen Jahre. Sterne in den Galaxien kollidieren dabei nur selten. Doch ihre großen Wolken aus molekularem Gas und Staub stoßen zusammen. Das löst mitten im kosmischen Trümmerhaufen Episoden heftiger Sternbildung aus.

Dieses Kompositbild ist etwa 500.000 Lichtjahre breit. Es zeigt auch neue Sternhaufen und Materieströme. Sie wurden durch die Gezeiten weit vom Ort der Karambolage weggeschleudert.

Das Mosaik entstand gemeinschaftlich aus den Daten kleiner und großer Teleskope auf der Erde. Sie betonen die langen, zarten Gezeitenströme. Das Ergebnis kombinierte man mit sehr detailreichen Bildern der hellen Kerne. Diese stammten vom Weltraumteleskop Hubble. Der visuelle Eindruck der langen gebogenen Strukturen gab dem Galaxienpaar seinen Namen: Die Antennen.

Zur Originalseite

Die Grand-Design-Spiralgalaxie M100

Die Spiralgalaxie M100 im Haar der Berenike ist eine Grand-Design-Spiralgalaxie. Kennzeichen dieser Galaxiengruppe sind ausladende, prachtvolle Spiralgalaxien, eine relativ ebenmäßige Erscheinung und ausgeprägte junge Sternhaufen.

Bildcredit: Hubble-Vermächtnisarchiv, NASA, ESABearbeitung und Lizenz: Judy Schmidt

Die Galaxie M100 ist majestätisch in einem wahrhaft kosmischen Maßstab. Sie ist passenderweise als Grand-Design-Spiralgalaxie klassifiziert. Die große Galaxie besitzt mehr als 100 Milliarden Sterne und klar definierte Spiralarme. Sie ähnelt unserer Milchstraße.

M100 ist auch als NGC 4321 katalogisiert und eine der hellsten Galaxien im Virgo-Galaxienhaufen. Sie ist 56 Millionen Lichtjahre von uns entfernt und befindet sich im Sternbild Haar der Berenike (Coma Berenices). Dieses Bild von M100 entstand 2006 mit dem Weltraumteleskop Hubble. Es zeigt helle, blaue Sternhaufen und komplexe gewundene Staubbahnen. Beides sind Kennzeichen dieser Galaxienklasse.

Die Untersuchung veränderlicher Sterne in M100 spielte eine wichtige Rolle bei der Bestimmung von Größe und Alter des Universums. Wenn ihr genau wisst, wo ihr suchen müsst, findet ihr einen kleinen Fleck. Er ist das Lichtecho einer hellen Supernova. Sie wurde wenige Monate vor Aufnahme dieses Bildes entdeckt.

Zur Originalseite

Ein extrem langes Filament auf der Sonne

Die Sonne ist bildfüllend dargestellt. Auf der Oberfläche sind pelzartige Strukturen, einige helle Flecken und ein sehr langes dunkles Filament. Am Rand ist die Sonne etwas dunkler und orangefarben.

Bildcredit und Bildrechte: Oliver Hardy

Gestern war auf der Sonne eines der längsten Filamente zu sehen, das je abgebildet wurde. Vielleicht ist es auch heute noch da. Das gewaltige Filament ist der dunkle Streifen unter der Mitte, es reicht auf der Vorderseite der Sonne über eine Distanz, die länger ist als der Sonnenradius – mehr als 700.000 Kilometer.

Ein Filament besteht aus heißem Gas, das vom Magnetfeld der Sonne in Schwebe gehalten wird. Von der Seite erscheint es als erhabene Protuberanz. Das Bild zeigt das Filament in Licht, das von Wasserstoff abgestrahlt wird. Dieses Licht zeigt auch die Chromosphäre der Sonne.

Sonnenbeobachtungsteleskope wie das Solar Dynamics Observatory (SDO) der NASA verfolgen diese ungewöhnliche Struktur. Gestern beobachtete das SDO ein einhüllendes spiralförmiges Magnetfeld. Filamente bestehen typischerweise nur Stunden oder Tage. Teile davon könnten jederzeit kollabieren oder ausbrechen. Bei einem Ausbruch werfen sie heißes Plasma entweder zur Sonne zurück oder schleudern es ins äußere Sonnensystem.

Ist das Filament noch da? Schaut nach, indem ihr auf das aktuelle SDO-Sonnenbild klickt.

Zur Originalseite

Schichtgestein bei Mount Sharp auf dem Mars

Das geschichtete Gestein des Whale Rock entstand wahrscheinlich unter dem Einfluss von Wasser. Der Marsrover Curiosity entdeckte es am Fuß des Mount Sharp (Aeolis Mons).

Bildcredit: NASA, JPL-Caltech, MSSS

Wie entstanden die Schichten in diesem Marsgestein? Die führende Hypothese vermutet einen urzeitlichen Marssee, der 10 Millionen Jahre lang fortwährend verdunstete und sich immer wieder füllte. Nun ist er jedoch seit Milliarden Jahren trocken und ohne Wasser.

Das Bild wurde letzten November vom Roboter-Rover Curiosity fotografiert. Es zeigt den Whale Rock. Er ist einen Meter groß und gehört zum Pahrump-Hills-Aufschluss am Fuß des Mount Sharp (Aeolis Mons).

Im Bild fällt auch die Schrägschichtung auf. Das Gestein mit geneigten Schichten entstand wahrscheinlich durch Sandwellen. Curiosity findet weiterhin viele geschichtete Gesteine wie dieses, während er um und auf den 5,5 Kilometer hohen Mount Sharp rollt.

Zur Originalseite

Staubsäule im Carinanebel

Vor einem petrolfarbenen Hintergrund, der lose mit Sternen übersät ist, ragt eine braune Staubsäule mit sehr starker Struktur auf. Sie ist von hellen gelben Strahlen umgeben.

Bildcredit: NASA, ESA und das Hubble-SM4-ERO-Team

Diese kosmische Säule aus Gas und Staub ist fast zwei Lichtjahre groß. Das Gebilde liegt in einer der größten Sternbildungsregionen unserer Galaxis, dem Carinanebel. Der Carinanebel leuchtet am Südhimmel. Er ist etwa 7500 Lichtjahre von uns entfernt.

Die verschnörkelten Umrisse der Säule wurden vom Wind und der Strahlung junger, heißer, massereicher Sterne in Carina geformt. Doch auch das Innere der kosmischen Säule enthält Sterne, die gerade erst entstehen. Eine Infrarot-Aufnahme, die alles durchdringt, zeigt zwei schmale, energiereiche Strahlströme, die in der Säule deutlich sichtbar sind. Sie strömen von einem noch versteckten jungen Stern auswärts.

Dieses Bild in sichtbarem Licht entstand 2009 mit der Weitwinkelkamera 3 des Weltraumteleskops Hubble.

Zur Originalseite

Polarlicht-Murmeln

Mehr als 600 Aufnahmen des ganzen Himmels wurden auf diesem Raster angeordnet. Von links oben nach rechts unten zeigen sie, wie sich Polarlichter am Himmel im Lauf von 2 Stunden entwickeln. Die Bilder erinnern an bunte Murmeln.

Bildcredit und Bildrechte: Babak Tafreshi (TWAN)

Das Raster aus Kugeln mit eingebetteten Wirbeln und Schlieren erinnert an eine hübsche Murmelsammlung. Es zeigt die dramatische Entwicklung eines Polarlicht-Teilsturms auf der Erde. Die Serie entstand im März 2012 in Lappland nahe beim Polarkreis im Norden von Schweden.

Die Bilder wurden in einem Zeitraum von 2 Stunden fotografiert. Es sind mehr als 600 Fischaugen-Bilder, die von Horizont zu Horizont reichen. Die Serie beginnt links oben in der Abenddämmerung und endet rechts unten. Während der Aufnahmen gibt es am Himmel zwei Aktivitätsspitzen mit hellen Polarlichtern.

Die NASA-Raumsondenflotte THEMIS erforscht den Raum zwischen Erde und Mond. Dabei entdeckte sie, dass solche Polarlicht-Explosionen durch plötzliche Energieentladungen in der Magnetosphäre der Erde ausgelöst werden.

Auch wenn ihr nicht mit Murmeln spielt, zeigt dieser Link die Bildfolge als Zeitraffervideo (Vimeo).

Zur Originalseite

Dreifache Konjunktion der Jupitermonde

Vor dem Planeten Jupiter schweben drei der vier galileischen Monde: Io, Europa und Kallisto. Auch die kleinen Monde Thebe und Amalthea sind im Bild.

Bildcredit: NASA, ESA und das Hubble-Vermächtnisteam (STScI/AURA)

Jupiter ist der größte Planet im Sonnensystem. Dieser Hubble-Schnappschuss vom 24. Jänner zeigt ihn zusammen mit drei seiner vier großen galileischen Monde.

Europa, Kallisto und Io ziehen vor Jupiters gestreifter Wolkenoberfläche vorbei. Sie sind von links unten nach rechts oben zu einer seltenen dreifachen Konjunktion angeordnet. Den Farben nach ist nur die eisige Europa fast weiß. Kallistos urzeitliche, von Kratern übersäte Oberfläche erscheint dunkelbraun. Der vulkanische Io leuchtet gelblich.

Wenn ihr den Mauspfeil über das Bild schiebt oder diesem Link folgt, erkennt ihr die vorbeiziehenden Monde und ihre Schatten. Dieses scharfe Hubblebild zeigt auch zwei kleine innere Jupitermonde. Es sind Amalthea und Thebe, die wir zusammen mit ihren Schatten erkennen.

Die galileischen Monde sind etwa 3000 bis 5000 Kilometer groß. Ihre Größe ist vergleichbar mit dem Erdmond. Doch Amalthea und Thebe sind seltsam geformt und nur etwa 260 bzw. 100 Kilometer groß.

Zur Originalseite

M104: Die Sombrerogalaxie

Mitten im Bild schwebt eine Spiralgalaxie, die hier an ein Ufo erinnert. Über einem hellen Kern wölbt sich eine nebelige Kuppel, die an Glas erinnert, außen herum verläuft ein breiter, sehr markanter Staubring.

Bilddaten: NASA, ESO, NAOJ, Giovanni Paglioli; Bearbeitung: R. Colombari

Die auffällige Spiralgalaxie M104 ist berühmt für ihr Profil, das wir von der Seite sehen. Die Galaxie hat einen breiten Ring aus undurchsichtigem Staub. Die markante Schneise aus kosmischem Staub sehen wir als Silhouette vor einer ausgedehnten Wölbung aus Sternen. Dadurch erinnert die Galaxie an einen Hut mit breiter Krempe. Das führte zu ihrem beliebteren Namen Sombrerogalaxie.

Die scharfe Ansicht der bekannten Galaxie entstand aus Daten des Weltraumteleskops Hubble und des Subaru-Teleskops auf der Erde. Das Bild wurde mit Amateur-Farbbilddaten ergänzt. Das führte zu natürlichen Farben. Das Ergebnis zeigt Details, die oft im gleißenden Licht der hellen, zentralen Wölbung von M104 untergehen, wenn man sie mit kleineren Instrumenten auf der Erde betrachtet.

Die Sombrerogalaxie ist als NGC 4594 katalogisiert. Sie leuchtet im ganzen Spektrum. Ihr Zentrum enthält vermutlich ein sehr massereiches Schwarzes Loch. M104 ist etwa 50.000 Lichtjahre groß und 28 Millionen Lichtjahre entfernt. Sie ist eine der größten Galaxien am südlichen Rand des Virgo-Galaxienhaufens.

Zur Originalseite