Herbig-Haro 24

In der Mitte der teils dunklen, teils orange-braunen Nebelwolken leuchtet ein helles Objekt. Links daneben strömen zwei Strahlen hinter einer dunklen Wolke hervor, einer nach oben, der andere nach unten.

Bildcredit: NASA, ESA, Hubble-Archiv (STScI / AURA) / Hubble-Europa-Kooperation; Danksagung: D. Padgett (GSFC), T. Megeath (Univ. Toledo), B. Reipurth (Univ. Hawaii)

HH 24 erinnert an ein Lichtschwert mit Doppelklinge. Doch es sind zwei kosmische Strahlen, die aus einem neu entstandenen Stern strömen. Er befindet sich in der Galaxis in unserer Nähe. Die faszinierende Szene entstand aus Bilddaten des Weltraumteleskops Hubble. Sie zeigt etwa ein halbes Lichtjahr von Herbig-Haro 24 (HH 24). Das Objekt ist an die 1300 Lichtjahre bzw. 400 Parsec entfernt.

HH 24 liegt in der Sternschmiede im Molekülwolkenkomplex Orion B. Das Objekt ist vor direkter Sicht verborgen. Der Protostern im Zentrum von HH 24 ist von kaltem Staub und Gas umgeben, das zu einer rotierenden Akkretionsscheibe abflachte. Wenn Materie aus der Scheibe zum jungen stellaren Objekt fällt, wird sie aufgeheizt.

Strahlströme werden in der Rotationsachse des Systems ausgeschleudert. Sie zeigen in entgegengesetzte Richtungen und schneiden durch die interstellare Materie in der Region. Die engen, energiereichen Strahlen erzeugen in ihren Strömungskanälen Serien aus leuchtenden Stoßfronten.

Zur Originalseite

Gefecht der Galaxien: M81 versus M82

Links oben ist die prachtvolle Spiralgalaxie M81 mit ausgeprägten Sternhaufen und Sternbildungsgebieten. Rechts unten befindet sich die irreguläre Galaxie M82, ein roter Nebel wird von einem weißen Balken gekreuzt.

Bildcredit und Bildrechte: Kollaboratives Astrofotografie-Team (CAT)

Im oberen linken Bildeck befindet sich die Spiralgalaxie M81. Sie ist von blauen Spiralarmen umgeben und mit roten Nebeln übersäht. Unten rechts sieht man die unregelmäßige Galaxie M82. Dieses wunderschöne Bild zeigt die beiden riesigen Galaxien. Sie halten sich durch ihre Schwerkraft gegenseitig in einem Kampf, der schon mehrere Milliarden Jahre dauert.

Eine nahe Begegnung, während der sich die beiden Galaxien durch ihre Schwerkraft dramatisch beeinflussen, zieht sich über mehrere Millionen Jahre hin. Beim letzten nahen Vorbeiflug hat die Schwerkraft von M82 Dichtewellen in M81 angeregt. Diese verursachten die dichten Spiralarme, die jetzt in M81 zu sehen sind. Umgekehrt wurde auch M82 nachhaltig beeinflusst. Deshalb gibt es viele Regionen mit aktiver Sternentstehung in der irregulären Galaxie. Auch energiereiche Gaswolken befinden sich darin, sie senden Röntgenstrahlung aus.

Von der Erde aus sehen wir diesen Kampf durch das schwache Leuchten des „galaktischen Zirrus“. Es ist ein noch kaum untersuchtes Nebelgebiet in unserer Milchstraße. Der Kampf selbst wird noch länger andauern: Erst in einigen Milliarden Jahren werden die beiden Galaxien in einer großen Galaxie verschmolzen sein.

Zur Originalseite

Der junge Sternhaufen NGC 346

Das Bild des Weltraumteleskops Webb zeigt einen Sternhaufen aus massereichen Sternen in der Kleinen Magellanschen Wolke. Im Bild sind auch viele lose Sterne und Emissionsnebel verteilt.

ForschungNASA, ESA, CSA, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA); Bearbeitung – Alyssa Pagan (STScI), Nolan Habel (USRA), Laura Lenkić (USRA), Laurie E. U. Chu (NASA Ames)

Der massereichste junge Sternhaufen in der Kleinen Magellanschen Wolke ist NGC 346. Er ist rund 210.000 Lichtjahre entfernt und in das größte Sternbildungsgebiet unserer kleinen Begleitgalaxie eingebettet.

Die massereichen Sterne von NGC 346 sind zwar kurzlebig, aber äußerst energiereich. Ihre Winde und Strahlung formen die Ränder der staubigen Molekülwolke und lösen dort weitere Sternbildung aus. Das Sternentstehungsgebiet enthält anscheinend zudem eine große Zahl junger Sterne. Diese sind gerade einmal 3 bis 5 Millionen Jahre alt. Sie haben noch nicht damit begonnen, Wasserstoff in ihren Kernen zu fusionieren. Diese jungen Sterne liegen über den eingebetteten Sternhaufen verstreut.

Die spektakuläre Infrarotaufnahme von NGC 346 stammt von der NIRCam am James-Webb-Weltraumteleskop. Die Emissionen in der Sternbildungsregion leuchten rosa und orangefarben. Sie stammen von atomarem Wasserstoff, der durch die energiereiche Strahlung der massereichen Sterne ionisiert wurde, sowie von molekularem Wasserstoff und Staub. Webbs gestochen scharfes Bild des jungen Sternentstehungsgebiets ist in der Entfernung der Kleinen Magellanschen Wolke 240 Lichtjahre breit.

Zur Originalseite

Der Orionnebel im sichtbaren und infraroten Licht

Der Orionnebel ist hier in sichtbarem und infrarotem Licht dargestellt. Die vielen Staubfäden, die auf Bildern in sichtbarem Licht dunkel wirken, leuchten hier hell.

Bildcredit und Bildrechte: Infrarot: NASA, Weltraumteleskop Spitzer; Sichtbares Licht: Oliver Czernetz, Siding Spring Obs.

Der Große Orion Nebel ist ein bunter Ort. Mit dem bloßen Auge sieht man einen ausgefransten Fleck im Sternbild Orion. Mit einer langen Belichtungszeit zeigen Bilder in mehreren Wellenlängen wie dieses den Orionnebel als eine Nachbarschaft aus jungen Sternen, heißen Gasen und dunklem Staub. Dieses digitale Komposit besteht nicht nur aus drei Farben des sichtbaren Lichts, sondern auch aus vier Farben infraroter Strahlung, die vom Weltraumteleskop Spitzer der NASA aufgenommen wurden. Spitzer befindet sich im Erdorbit.

Die Energie, die den Orionnebel (M42) weitestgehend antreibt, stammt vom Trapez. Es sind vier der hellsten Sterne im Nebel. Viele der sichtbaren Filamente sind Stoßwellen – Fronten, an denen schnelle Materie auf langsames Gas trifft. Der Orionnebel durchmisst etwa 40 Lichtjahre und befindet sich etwa 1500 Lichtjahre von der Sonne entfernt im selben Spiralarm unserer Galaxis.

Zur Originalseite

Webb zeigt den interstellaren Strahl HH 49

Eine Gaswolke türmt sich diagonal im Bild auf. Ihre äußere Hülle ist rot leuchtend dargestellt.An ihrer Spitze befindet sich eine Spiralgalaxie, die jedoch weit hinter der Wolke liegt.

Bildcredit: NASA, ESA, CSA, STScI, JWST

Was befindet sich am Ende dieses interstellaren Jets? Betrachten wir zunächst den Strahl selber: Er wird von einem Sternsystem ausgestoßen, das sich gerade erst bildet, und ist als Herbig-Haro 49 (HH 49) katalogisiert. Das Sternsystem, das diesen Jet ausstößt, ist nicht sichtbar – es befindet sich rechts unten außerhalb des Bildes.

Die komplexe, spitz zulaufende Struktur, die auf diesem Infrarotbild vom James Webb Space Telescope (JWST) gezeigt wird, beinhaltet noch einen weiteren Jet, der als HH 50 katalogisiert ist. Die schnellen Jet-Partikel treffen auf das umgebende interstellare Gas und bilden Stoßwellen, die im Infrarotlicht hell leuchten. Sie sind hier als rotbraune Strukturen dargestellt.

Das JWST-Bild hat auch das Rätsel um das ungewöhnliche Objekt an der Spitze von HH 49 gelöst: Es handelt sich um eine weit entfernte Spiralgalaxie. Das blaue Zentrum besteht daher nicht aus einem Stern, sondern aus vielen, und die umgebenden Kreisringe sind eigentlich Spiralarme.

Durchs Universum springen: APOD-Zufallsgenerator

Zur Originalseite

Sternbildung im Pac-Man-Nebel

Eine blaue Nebelmitte ist von einem roten Rand umgeben. Rechts ist eine Einkerbung mit einem dunklen Staubwall. Der Nebel im Sternbild Kassiopeia erinnert entfernt an Pac-Man.

Bildcredit und Bildrechte: Juan Montilla (AAE)

Man könnte meinen, der Pac-Man-Nebel würde Sterne fressen, aber in Wirklichkeit bildet er sie. Im Inneren des Nebels sorgen die jungen, massereichen Sterne eines Sternhaufens für das durchdringende Leuchten des Nebels.

Die auffälligen Formen, die sich im Porträt von NGC 281 abzeichnen, sind geformte Staubsäulen und dichte Bok-Globulen, die durch intensive, energiereiche Winde und die Strahlung der heißen Sterne des Haufens abgetragen werden. Wenn sie lange genug überleben, könnten die staubigen Strukturen auch Orte zukünftiger Sternentstehung sein.

NGC 281 wird wegen seiner Form auch Pac-Man-Nebel genannt. Er befindet sich in etwa 10.000 Lichtjahren Entfernung im Sternbild Kassiopeia.

Dieses scharfe Kompositbild wurde Mitte 2024 in Spanien durch Schmalbandfilter aufgenommen. Es kombiniert die Emissionen der Wasserstoff- und Sauerstoffatome des Nebels, um die Farben Rot, Grün und Blau zu erzeugen. Die Szene erstreckt sich über mehr als 80 Lichtjahre bei der geschätzten Entfernung von NGC 281.

Zur Originalseite

LDN 1235: Der Hainebel

Graubraune Staubwolken breiten sich in dieser Himmelslandschaft aus. Dazwischen befinden sich einige blaue Reflexionsnebel. Im Hintergrund sind viele zarte und einige größere Sterne verteilt.

Bildcredit und Bildrechte: Timothy Martin

Der Hainebel – kein Gewässer dieser Erde wäre groß genug, ihn zu beherbergen. Diese räuberische Erscheinung stellt jedoch keine Gefahr für uns dar, da sie nur aus Gas und Staub besteht.

Der dunkle Staub erinnert etwas an Zigarettenrauch, er ist aber in den kühlen Atmosphären von Riesensternen entstanden. Das von ihnen ausgestoßene Gas wird meist Teil einer neuen Gas- und Staubwolke. Die Gravitation in diesen Wolken verdichtet das Material und lässt neue massereiche Sterne entstehen.

Deren energiereiches Licht und die schnellen Sternenwinde meißeln regelrecht die faszinierendsten Gebilde in ihre Entstehungswolke. Die dabei erzeugte Hitze verdampft die trüben Molekülwolken, verteilt den Wasserstoff in der Umgebung und lässt ihn rot leuchten. Wenn die Molekülwolken nach und nach zerfallen, erkennen wir Menschen vertraute Formen in diesen prächtigen Wolken – ganz so, wie wir es mit den irdischen Wolken machen.

Gemeinsam mit den kleineren Staubnebeln Van den Bergh 149 und 150 erstreckt sich der auch als LDN 1235 bekannte Hainebel über etwa 15 Lichtjahre. Er ist in einer Entfernung von ungefähr 650 Lichtjahren im Sternbild Kepheus, dem König des einstigen Aithiopia, zu finden.

Zur Originalseite

Protosterne in Lynds 483

Die hochaufgelöste Ansicht des Webb Teleskops zeigt die Jets in dramatischen Details als sich windende Schockfronten, die sich ausdehnen und mit langsamerem, dichterem Material kollidieren.

Bildcredit: NASA, ESA, CSA

Diese Nahinfrarot-Aufnahme des Weltraumteleskops James Webb zeigt einen beeindruckenden sanduhrförmigen Nebel. In einem einzigen Pixel nahe der Mitte verbergen sich zwei Protosterne. Das Sternsystem, das hier entsteht, liegt in einer dichten Molekülwolke. Es ist als Lynds 483 katalogisiert. Das Sternsystem ist etwa 650 Lichtjahre entfernt. Es liegt im Sternbild Serpens Cauda (Schwanz der Schlange).

Die spektakulären bipolaren Ströme stammen von den kollabierenden Protosternen. Die Protosterne stoßen seit mehr als zehntausend Jahren gebündelte energiereiche Materiestrahlen aus.

Die hochaufgelöste Ansicht des Webb-Teleskops zeigt dramatischen Details der Ströme als sich windende Stoßfronten, die sich ausdehnen. Sie kollidieren mit langsamerem, dichterem Material. Die Nahaufnahme der sternbildenden Region im Dunkelnebel Lynds 483 ist weniger als ein halbes Lichtjahr breit.

Heute: Totale Mondfinsternis

Zur Originalseite