Galaxien im Chemischen Ofen

Eine große Galaxie ist von schalenartigen Hüllen umgeben. Rechts neben ihrem Zentrum ist eine kleinere Galaxie mit Hüllen. Beide gehören zum Fornax-Galaxienhaufen. Im Bild sind einige weitere, kleinere Galaxien und ein paar Sterne mit Lichtkreuzen verteilt. Dazwischen sind viele kleine Sterne.

Bildcredit und Bildrechte: Simone Curzi und das ShaRA-Team

Die elliptische Galaxie NGC 1316 ist ein Beispiel für Gewalt in kosmischem Ausmaß. Sie ist etwa 75 Millionen Lichtjahre entfernt und liegt im südlichen Sternbild Chemischer Ofen (Fornax). Man untersuchte diese riesige Galaxie. Daher vermuten Forschende der Astronomie, dass sie mit ihrer kleineren Nachbarin NGC 1317 kollidiert. Diese liegt rechts neben der Mitte der großen Galaxie. Bei der Begegnung wurden Schleifen und Hüllen aus Sternen weit hinausgeschleudert. Das Licht, das bei ihrer nahen Begegnung abgestrahlt wurde, erreichte die Erde vor etwa 100 Millionen Jahren.

Das scharfe Teleskopbild zeigt die zentralen Bereiche von NGC 1316 und NGC 1317. Sie sind mehr als 100.000 Lichtjahre voneinander entfernt. Komplexe Staubspuren in NGC 1316 zeigen, dass auch sie das Ergebnis der Verschmelzung von Galaxien in der fernen Vergangenheit ist.

Man kennt NGC 1316 auch als Fornax A. Sie liegt am Rand des Galaxienhaufens in Fornax. Dort ist sie ist eine der hellsten Galaxien, aber auch eine der stärksten und größten Radioquellen am ganzen Himmel. Ihre Radioemissionen reichen weit über dieses Sichtfeld, das 1 Grad breit ist, hinaus.

Zur Originalseite

GW250114: Rotierende Schwarze Löcher kollidieren

Die Illustration der Künstlerin Aurore Simonnet zeigt ein Schwarzes Loch vor seiner Verschmelzung.

Illustrationscredit: Aurore Simonnet (SSU/EdEon), LVK, URI; LIGO-Arbeitsgemeinschaft

Es war das stärkste Signal von Gravitationswellen, das man je gemessen hat. Was zeigte es? GW250114 wurde Anfang des Jahres von beiden Armen von LIGO in Washington und Louisiana in den USA entdeckt. LIGO steht für Laser Interferometer Gravitational-Wave Observatory. Die Analyse ergab, dass bei dem Ereignis zwei Schwarze Löcher zu einem größeren Schwarzen Loch mit etwa 63 Sonnenmassen verschmolzen. Jedes einzelne hatte davor etwa 33 Sonnenmassen.

Das Ereignis fand zwar rund eine Milliarde Lichtjahre entfernt statt. Doch das Signal war so stark, dass erstmals der Spin aller Schwarzen Löcher genau bestimmt werden konnte. Außerdem wurde besser als je zuvor bestätigt, dass die gesamte Fläche des Ereignishorizonts um das kombinierte Schwarze Loch größer war als die der verschmelzenden Schwarzen Löcher. Genau so wurde es vorhergesagt.

Diese Illustration einer Künstlerin zeigt eine Ansicht aus der Nähe eines Schwarzen Lochs vor der Kollision.

Zur Originalseite

Kollision beim Asteroiden Dimorphos

Videocredit: ASI NASA, Johns Hopkins APL, DART, LICIACube, LUKE, IOP

Was macht diese Kollision so ungewöhnlich? Im Jahr 2022 testete die NASA eine Technologie, die vielleicht einmal die Erde retten kann: Das kleine Raumschiff DART kollidierte absichtlich mit dem kleinen Asteroiden Dimorphos. Er ist der Mond des größeren Asteroiden Didymos.

Man erwartete, dass sich die Umlaufbahn von Dimorphos durch den Zusammenstoß verändert. Vielleicht kann man in Zukunft die Erde mit einer ähnlichen Vorgangsweise vor einem gefährlichen Asteroiden bewahren. Die Analyse neuer Daten zeigt aber, dass die Sache anders ausging als erwartet. Den Grund dafür suchen Wissenschaftler noch.

Das Zeitraffer-Video stammt von der abgesetzten LICIACube-Kamera LUKE. Es zeigt, wie sich das Trümmerfeld nach der Kollision etwa 250 Sekunden lang ausbreitet. Didymos fliegt vorne unbehelligt durch das Bild.

Erst 2026 erreicht die europäische Raumfahrtmission Hera die beiden Asteroiden. Sie soll vor Ort drei kleine Raumschiffe absetzen. Diese sollen den Ausgang der Kollision weiter untersuchen.

Zur Originalseite

Die Schirmgalaxie NGC 4651

Über der Spiralgalaxie NGC 4651 im Sternbild Haar der Berenike ragt im Bild ein Schirm aus Sternen auf. Er entstand, indem eine kleine Galaxie durch Gezeitenkräfte zerrissen wurde. Außen herum sind einzelne Sterne verteilt, sie befinden sich in der Milchstraße in unserer Nähe.

Bildcredit: Rabeea Alkuwari und Anas Almajed

Es regnet es Sterne in NGC 4651. Was wie ein riesiger kosmischer Schirm aussieht, ist ein Gezeitenstrom aus Sternen. Diese wurden aus einer kleinen Begleitgalaxie gerissen. Die Hauptgalaxie ist NGC 4651. Diese Spiralgalaxie ist annähernd so groß wie unsere Milchstraße. Ihr Sternenschirm reicht bis zu 100.000 Lichtjahre über die helle Scheibe der Galaxie hinauf.*

Wahrscheinlich kam eine kleine Galaxie auf einer exzentrischen Bahn durch NGC 4651 dem Zentrum immer wieder sehr nahe. Bei diesen wiederholten Begegnungen zerfiel sie schließlich. Die herausgerissenen Sterne fallen in den nächsten paar Millionen Jahren zurück in die große Galaxie.

Dieses detailreiche Bild entstand aus lang belichteten Aufnahmen. Sie wurden in Saudi Arabien fotografiert. Die Schirmgalaxie ist etwa 50 Millionen Lichtjahre entfernt.* Sie liegt im gut gekämmten nördlichen Sternbild Haar der Berenike (Coma Berenices).
*Anm. d. Übers.: Die genaue Größe der einzelnen Strukturen ist nicht bekannt, weil die Entfernung bisher nicht genau gemessen werden konnte.

APOD in neuem Look: StellarSnap

Zur Originalseite

UGC 1810: Hubble zeigt einen wilden Galaxienkampf

Die Galaxie UGP 1810 im Sternbild Andromeda hat wild geschlungene Spiralarme. In der Mitte sind das Zentrum und die Spiralarme gelb, außen herum blau und teilweise fleckig.

Bildcredit: NASA, ESA, Hubble, HLA; Barbeitung und Bildrechte: Domingo Pestana

Was passiert denn mit dieser Spiralgalaxie? Es muss sich wohl um die Folgen eines galaktischen Kampfes handeln. Auch wenn einige Details noch ungewiss sind, ist klar, dass der Mitstreiter eine kleinere Nachbargalaxie ist und der Kampf noch andauert. Die Galaxie im Bild ist unter dem Namen UGC 1810 bekannt. In Kombination mit ihrem Kollisionspartner wird sie auch Arp 273 genannt.

Ihre Form – insbesondere den äußeren blauen Ring – verdankt sie wohl heftigen gravitativen Wechselwirkungen. Die blaue Farbe des Rings wird von massereichen Sternen verursacht. Diese Sterne sind erst vor einigen Millionen Jahren entstanden, sie sind sehr heiß und strahlen daher blau. Der innere Teil der Galaxie erscheint älter, röter und ist von kühlen Staubbändern durchzogen. Im Vordergrund sind auch einige helle Sterne zu sehen, die aber keinen Bezug zu UGC 1810 haben. Gleiches gilt für die Galaxien, die im Hintergrund gut zu erkennen sind.

Arp 273 ist in einer Entfernung von 300 Millionen Lichtjahren im Sternbild Andromeda zu finden. Höchstwahrscheinlich wird UGC 1810 ihren galaktischen Partner in den nächsten Milliarden Jahren verschlingen und die Form einer klassischen Spiralgalaxie annehmen.

Zur Originalseite

Gefecht der Galaxien: M81 versus M82

Links oben ist die prachtvolle Spiralgalaxie M81 mit ausgeprägten Sternhaufen und Sternbildungsgebieten. Rechts unten befindet sich die irreguläre Galaxie M82, ein roter Nebel wird von einem weißen Balken gekreuzt.

Bildcredit und Bildrechte: Kollaboratives Astrofotografie-Team (CAT)

Im oberen linken Bildeck befindet sich die Spiralgalaxie M81. Sie ist von blauen Spiralarmen umgeben und mit roten Nebeln übersäht. Unten rechts sieht man die unregelmäßige Galaxie M82. Dieses wunderschöne Bild zeigt die beiden riesigen Galaxien. Sie halten sich durch ihre Schwerkraft gegenseitig in einem Kampf, der schon mehrere Milliarden Jahre dauert.

Eine nahe Begegnung, während der sich die beiden Galaxien durch ihre Schwerkraft dramatisch beeinflussen, zieht sich über mehrere Millionen Jahre hin. Beim letzten nahen Vorbeiflug hat die Schwerkraft von M82 Dichtewellen in M81 angeregt. Diese verursachten die dichten Spiralarme, die jetzt in M81 zu sehen sind. Umgekehrt wurde auch M82 nachhaltig beeinflusst. Deshalb gibt es viele Regionen mit aktiver Sternentstehung in der irregulären Galaxie. Auch energiereiche Gaswolken befinden sich darin, sie senden Röntgenstrahlung aus.

Von der Erde aus sehen wir diesen Kampf durch das schwache Leuchten des „galaktischen Zirrus“. Es ist ein noch kaum untersuchtes Nebelgebiet in unserer Milchstraße. Der Kampf selbst wird noch länger andauern: Erst in einigen Milliarden Jahren werden die beiden Galaxien in einer großen Galaxie verschmolzen sein.

Zur Originalseite

Die doppelt gekrümmte Welt binärer Schwarzer Löcher

Quelle der wissenschaftlichen Visualisierung: NASA, GSFC, Jeremy Schnittman und Brian P. Powell; Text: Francis J. Reddy

Wenn ein Schwarzes Loch seltsam aussieht, wie seltsam sind dann erst zwei? HIer kreist ein Paar supermassereicher Schwarzer Löcher umeinander. Die detaillierte Computeranimation zeigt, wie sich Lichtstrahlen aus ihren Akkretionsscheiben ihren Weg durch die gekrümmte Raumzeit bahnen, die von extremer Gravitation erzeugt wird.

Die simulierten Akkretionsscheiben sind in Falschfarben dargestellt. Rot für die Scheibe um ein Schwarzes Loch mit 200 Millionen Sonnenmassen, Blau für die Scheibe um ein Schwarzes Loch mit 100 Millionen Sonnenmassen. Bei diesen Massen würden allerdings beide Akkretionsscheiben das meiste Licht im Ultraviolett abstrahlen.

Das Video zeigt uns jedes der Schwarzen Löcher gleichzeitig von beiden Seiten. Rotes bzw. blaues Licht von beiden Schwarzen Löchern ist im innersten Ring zu sehen. Dieser Ring wird Photonensphäre genannt. Er liegt nahe an den Ereignishorizonten.

In den vergangenen zehn Jahren entdeckte man Gravitationswellen von kollidierenden Schwarzen Löchern. Doch das Verschmelzen supermassereicher Schwarzer Löcher konnte bisher noch nicht nachgewiesen werden.

Bei der NASA ist Woche der Schwarzen Löcher!

Zur Originalseite

MESSENGERs letzter Tag auf Merkur

Wir blicken schräg auf einen rechteckigen Ausschnitt der Merkur-Oberfläche. Sie ist rot und blau farbcodiert und zeigt einige Krater. Rote Teile im Bild sind höher als blaue.

Bildcredit: NASA, Johns Hopkins Univ. APL, Staatliche Universität Arizona, CIW

MESSENGER war die erste Raumsonde, die um den innersten Planeten Merkur kreiste. Sie wurde am 30. April 2015 in der oben gezeigten Region auf Merkurs Oberfläche abgesetzt. Die Projektion entstand aus MESSENGER-Bildern und Laser-Höhenmessungen. Der Blick reicht nach Norden über den nordöstlichen Rand des breiten Shakespeare-Beckens, das mit Lava gefüllt ist.

In der linken oberen Ecke liegt der große, 48 km breite Krater Janacek. Die Höhe der Landschaft ist farbcodiert. Rote Bereiche liegen etwa 3 km über den blauen. MESSENGERs letzter Umlauf sollte etwa in der Mitte enden. Dabei sollte die Raumsonde mit fast 4 km/s auf der Oberfläche einschlagen und dabei einen neuen, etwa 16 m großen Krater erzeugen.

Der Einschlag fand auf Merkurs Rückseite statt und wurde nicht mit Teleskopen beobachtet. Er wurde aber indirekt bestätigt. Denn als die Raumsonde hinter dem Planeten auftauchen sollte, wurde kein Signal mehr gemessen. Die Raumsonde MErcury Surface, Space ENvironment, GEochemisty and Ranging startete 2004. Sie erreichte 2011 den innersten Planeten im Sonnensystem und machte mehr als 4000 Umläufe.

Zur Originalseite