Supernova-Kanone stößt Pulsar J0002 aus

Die Illustration zeigt einen Supernova-Überrest mit einer Linie, die sich nach rechts unten erstreckt und die Spur eines Neutronensterns darstellt.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Kanadische Vermessung der galaktischen Ebene (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Was kann einen Neutronenstern wie eine Kanonenkugel hinausschießen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebeligen Überrest CTB 1 erzeugte, nicht nur einen massereichen Stern, sondern schleuderte außerdem den neu entstandenen Neutronensternkern – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7 Mal pro Sekunde. Er wurde mithilfe der zum Download angebotenen Software Einstein@Home entdeckt. Diese Software durchsucht die Daten des Gammastrahlenobservatoriums Fermi der NASA im Weltraum.

Der Pulsar PSR J0002+6216 (kurz J0002) rast mit mehr als 1000 km pro Sekunde durchs All. Er hat den Supernovaüberrest CTB 1 bereits hinter sich und ist sogar schnell genug, um die Galaxis zu verlassen. Auf diesem Bild ist die Spur des Pulsars gut erkennbar, sie führt vom Supernovaüberrest nach links unten.

Das Bild ist eine Kombination aus Radiobildern der Radioobservatorien VLA und DRAO sowie Archivdaten des Infrarot-Weltraumobservatoriums IRAS der NASA. Wir wissen, dass Supernovae wie Kanonen agieren können, und auch, dass sich Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das zustande bringen.

Zur Originalseite

Der Krebsnebel in vielen Wellenlängen

Der Krebsnebel Messier 1 im Sternbild Stier, abgebildet in vielen Wellenlängen des elektromagnetischen Spektrums.

Bildcredit: NASA, ESA, G. Dubner (IAFE, CONICET-Universität von Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; Hubble/STScI

Beschreibung: Der Krebsnebel ist als M1 katalogisiert, er ist das erste Objekt auf Charles Messiers berühmter Liste an Dingen, die keine Kometen sind. Heute wissen wir, dass der Krebsnebel ein Supernovaüberrest ist, also die sich ausdehnenden Trümmer von der finalen Explosion eines massereichen Sterns. Diese Explosion wurde 1054 n. Chr. auf dem Planeten Erde beobachtet.

Dieses beeindruckende neue Bild zeigt eine Ansicht der Krabbe aus dem 21. Jahrhundert, es stellt Bilddaten aus dem gesamten elektromagnetischen Spektrum in Wellenlängen des sichtbaren Lichts dar. Daten aus dem Weltraum von Chandra (Röntgen), XMM-Newton (Ultraviolett), Hubble (sichtbares Licht) und Spitzer (Infrarot) sind in violetten, blauen, grünen und gelben Farbtönen abgebildet. Radio-Daten des Very Large Array vom Boden sind rot eingefärbt.

Der Krebs-Pulsar ist eines der exotischsten Objekte, die Astronominnen und Astronomen heute kennen. Es der helle Punkt nahe der Bildmitte – ein Neutronenstern, der 30 Mal pro Sekunde rotiert. Wie ein kosmischer Dynamo sorgt dieser kollabierte Überrest des Sternkerns für die Emissionen des Krebsnebels im gesamten elektromagnetischen Spektrum.

Der Krebsnebel ist ungefähr 12 Lichtjahre groß und 6500 Lichtjahre entfernt, ihr seht ihn im Sternbild Stier.

Wien, Ladenkonzept Nähe Votivkirche: Kostenlose Kalender (leichte Mängel)

Zur Originalseite

Das vertikale Magnetfeld von NGC 5775

Die Spiralgalaxie NGC 5775 wurde bei der CHANG-ES-Durchmusterung (Continuum Halos in Nearby Galaxies) beobachtet, zeigt besitzt Ausläufer von Magnetfeldlinien.

Bildcredit: NRAO, NASA, ESA, Hubble; Bearbeitung und Text: Jayanne English (U. Manitoba)

Beschreibung: Wie weit reichen Magnetfelder aus Spiralgalaxien hinaus und nach oben? Jahrzehntelang wussten Astronom*innen nur, dass einige Spiralgalaxien Magnetfelder besitzen. Doch nachdem die NRAORadioteleskope des Very Large Array (VLA) (bekannt aus dem Film Contact) im Jahr 2011 aufgerüstet wurden, entdeckte man wie erwartet, dass diese Felder von der Scheibe aus senkrecht mehrere Tausend Lichtjahre hinaus reichen.

Dieses Bild der von der Seite sichtbaren Spiralgalaxie NGC 5775, die im Rahmen der CHANG-ES-Durchmusterung (Continuum Halos in Nearby Galaxies), zeigt auch Ausläufer von Magnetfeldlinien, wie sie in Spiralgalaxien üblich sein können. Ähnlich wie Eisenfeilspäne um einen Stabmagneten zeichnet die Strahlung von Elektronen galaktische Magnetfeldlinien nach, indem sich die Elektronen fast mit Lichtgeschwindigkeit um diese Linien schrauben.

Die Fasern im Bild wurden aus solchen Spuren in den VLA-Daten konstruiert. Das Bild in sichtbarem Licht wurde aus Daten des Weltraumteleskops Hubble konstruiert. Es zeigt rosarote, gashaltige Regionen, in denen Sterne entstehen. Anscheinend tragen Winde aus diesen Regionen zur Ausbildung der prächtigen ausgedehnten galaktischen Magnetfelder bei.

Zur Originalseite

Das Very Large Array im Mondschein

Das Very Large Array VLA hat 27 Antennen, jede davon ist 25 Meter groß, sie sind auf Schienen montiert und können über 35 Kilometer verteilt werden.

Bildcredit: Jeff Hellermann, NRAO / AUI / NSF

Beschreibung: Diese riesigen Antennenschüsseln des Karl G. Jansky Very Large Array (VLA), die hier bei Monduntergang in der Wüste von New Mexico aufragen, sind ein inspirierender Anblick. Die 27 in Betrieb befindlichen Antennen des VLA, jede davon so groß wie ein Haus (Durchmesser: 25 Meter), sind auf Schienen montiert und können in eine Anordnung gebracht werden, die so groß ist wie eine Stadt (35 Kilometer).

Das VLA ist ein produktives Arbeitstier. Mit seiner Hilfe entdeckte man Wasser auf dem Planeten Merkur, helle Radio-Höfe um Sterne, Mikro-Quasare in unserer Galaxis, gravitationsbedingte Einsteinringe um ferne Galaxien und Radio-Gegenstücke zu kosmologisch fernen Gammastrahlenausbrüchen. Seine gewaltige Größe ermöglichte es Astronomen, die Details von Radiogalaxien und sehr schnellen kosmischen Strahlen zu untersuchen und das Zentrum unserer Milchstraße zu vermessen.

40 Jahre sind seit seiner Einweihung vergangen. Seither wurden mehr als 14.000 Beobachtungsprojekte mit dem VLA durchgeführt, und es trug zu mehr als 500 Dissertationen bei. Am 10. Oktober veranstaltet das National Radio Astronomy Observatory ganztägig eine Online-Feier zum 40-Jahr-Jubiläum des VLA mit virtuellen Touren und Präsentationen zu Geschichte, Betrieb, Wissenschaft und Zukunft des Very Large Array.

Zur Originalseite

Der alte Mond in den Armen des neuen Mondes

Am Horizont ragen die Silhouetten zahlreicher Radioteleskope auf. Der Himmel dahinter leuchtet dunkelrot und wird nach oben hin dunkelblau. Rechts oben leuchtet ein junger Sichelmond, dessen Nachtseite von der Erde beleuchtet wird.

Bildcredit und Bildrechte: Stan Honda

Beschreibung: Heute Nacht ist der Mond wieder jung, doch dieses faszinierende Bild eines jungen Mondes nahe dem westlichen Horizont wurde am 10. Oktober kurz nach Sonnenuntergang fotografiert. Die sonnenbeleuchtete, nur zwei Tage alte Sichel umarmt auf der Mondscheibe den Erdschein, das ist Erdlicht, das von der Nachtseite des Mondes reflektiert wird.

Am Horizont vor der abklingenden Dämmerung stehen die Silhouetten der Antennenschüsseln von Radioteleskopen des Very Large Array in New Mexico, Planet Erde.

Die Aussicht auf dem Mond wäre ebenfalls beeindruckend. Wenn der Mond am Erdhimmel als schmale Sichel erscheint, wäre auf der Mondoberfläche eine strahlend helle, fast volle Erde zu sehen. Vor 500 Jahren beschrieb Leonardo da Vinci den Erdschein als Sonnenlicht, das von den Ozeanen der Erde reflektiert wird und die dunkle Mondoberfläche beleuchtet.

Zur Originalseite

Strichspuren und die Bracewell-Radiosonnenuhr

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Miles Lucas am NRAO

Beschreibung: Sonnenuhren messen anhand der Schattenposition die Rotation der Erde und zeigen die Tageszeit an. Daher passt es gut, dass diese Sonnenuhr am Radioteleskop-Observatorium Very Large Array in New Mexico an die Geschichte der Radioastronomie und den Radioastronomiepionier Ronald Bracewell erinnert.

Die Radiosonnenuhr wurde aus Teilen einer Sonnenvermessungs-Radioteleskopanordnung gebaut, die Bracewell ursprünglich in der Nähe des Campus der Universität Stanford gebaut hatte. Mit Bracewells Anlage wurden Daten zur Planung der ersten Mondlandung gesammelt, ihre Säulen wurden von Gastwissenschaftlern und Radioastronomen signiert, darunter zwei Nobelpreisträger.

Wie bei den meisten Sonnenuhren folgt der Schatten, den der Gnomon in der Mitte wirft, den Markierungen für die Sonnenzeit des Tages sowie die Sonnenwenden und Äquinoktien. Doch Markierungen der Radiosonnenuhr sind auch nach der lokalen siderischen Zeit angeordnet. Diese Markierungen zeigen die Position der unsichtbaren Radioschatten dreier heller Radioquellen am irdischen Himmel: den Schatten des Supernovaüberrestes Cassiopeia A, der aktiven Galaxie Cygnus A und der aktiven Galaxie Centaurus A.

Siderische Zeit bedeutet einfach „Sternzeit“ – dabei misst man die Erdrotation an Sternen und fernen Galaxien. Diese Rotation spiegelt sich auf dieser einstündigen Aufnahme wider. Über der Bracewell-Radiosonnenuhr ziehen die Sterne konzentrische Spuren um den Himmelsnordpol.

Zur Originalseite