Kataklysmische Dämmerung

Hinter einem Gewässer, auf das man aus einer Höhle hinausblickt, strahlt am Horizont ein energiereiches Gebilde, das den Himmel rot färbt. Ein Strahl reicht nach oben zu einer Akkretionsscheibe. Links und rechts von dem Strahl sind die Sicheln von Himmelskörpern zu sehen.

Illustrationscredit und Bildrechte: Mark A. Garlick (Space-art.co.uk)

Bringt diese Dämmerung eine neue Nova? Das überlegen vielleicht Menschen in der Zukunft, wenn sie auf einem Planeten in einem kataklysmisch veränderlichen Doppelsternsystem leben.

Bei kataklysmischen Veränderlichen fließt Gas von einem großen Stern in eine Akkretionsscheibe, die um einen massereichen, kompakten weißen Zwergstern kreist. Wenn ein Klumpen Gas in der Akkretionsscheibe über eine gewisse Temperatur erhitzt wird, können explosive kataklysmische Ereignisse wie eine Zwergnova stattfinden. Dabei fällt der Klumpen schneller auf den Weißen Zwerg und landet mit einem hellen Blitz.

Eine Zwergnova zerstört keinen der beide Sterne. Zwergnovae können in unregelmäßigen Zeitabständen stattfinden. Das können wenige Tagen bis zu zehn Jahre sein. So eine Nova setzt weniger Energie frei als eine Supernova.

Doch wenn wiederholte Novae nicht heftig genug sind, um mehr Gas auszustoßen, als von außen einfällt, sammelt sich Materie auf dem Weißen Zwergstern an. Schließlich überschreitet der Weiße Zwerg die Chandrasekhargrenze. Dann bietet eine Höhle wie jene im Vordergrund wohl wenig Schutz, denn der ganze Weiße Zwerg explodiert als gewaltige Supernova.

Zur Originalseite

SN 2014J schickt keine Röntgenstrahlen

Mitten im Bild leuchtet ein Nebel, er ist im Zentrum sehr hell und wird nach außen hin rötlich. Rechts neben der Mitte markiert ein weißer Kasten die Position der Supernova SN 2014J. Die Aufnahmen in Röntgenlicht vor und nach der Explosion sind in zwei Einschüben unten gezeigt.

Bildcredit: NASA / CXC / SAO / R. Margutti et al.

Im Jänner beobachteten Teleskope und Observatorien auf der ganzen Erde, wie die Helligkeit der Supernova SN 2014J in der nahen Galaxie M82 anstieg. Doch die vielleicht wichtigste Beobachtung gelang im Orbit. Dort sah das Röntgenobservatorium Chandra nämlich – nichts.

Die Explosion von SN 2014J wurde als Typ-Ia-Supernova klassifiziert. Man dachte, ein Weißer Zwerg hätte stetig Materie von einem Begleitstern abgezogen. Dieser Zuwachs hätte schließlich die Supernova gezündet. Zu diesem Modell gehört Röntgenstrahlung. Sie entsteht, wenn die Druckwelle der Supernova auf die übrige Materie in der Umgebung des Weißen Zwergs trifft.

Doch bei der Supernova SN 2014J war keine Röntgenstrahlung zu messen. Chandras Falschfarben-Röntgenbild der Galaxie M82 zeigt zwei großteils leeren Nahaufnahmen der Position der Supernova. Sie sind in den Einschüben „Pre“ (vorher) und „Post“ (nachher) abgebildet. Nach dem überraschenden Mangel an Röntgenstrahlung von SN 2014J werden neue Modelle entwickelt. Sie sollen klären, was die kosmische Explosion auslöste.

Zur Originalseite

Supernovaüberrest SN 1006

Vor einem Hintergrund aus kleinen, relativ dicht verteilten Sternen breitet sich eine Blase aus. Sie wirkt ein bisschen fluffig, der Rand erinnert an eine Seifenblase.

Bildcredit: NASA, ESA, Zolt Levay (STScI)

1006 n. Chr. blitzte am Himmel des Planeten Erde ein neuer Stern auf. Er war die vielleicht hellste Supernova seit Beginn der Geschichtsaufzeichnung. Die Trümmerwolke der Sternexplosion dehnt sich aus. Sie befindet sich im südlichen Sternbild Wolf. Noch heute veranstaltet sie eine kosmische Lichtschau im ganzen elektromagnetischen Spektrum.

Das Kompositbild zeigt Röntgendaten des Chandra-Observatoriums in Blau. Optische Daten sind in gelblichen Farbtönen und Radiodaten sind rot dargestellt. Die Trümmer sind heute als Supernovaüberrest SN 1006 bekannt. Die Wolke hat einen Durchmesser von etwa 60 Lichtjahren. Sie stammt vermutlich von einem Weißen Zwergstern.

Der kompakte Weiße Zwerg ist Teil eines Doppelsternsystems. Er zog allmählich Materie von seinem Begleitstern ab. Die Ansammlung an Masse löste später eine thermonukleare Explosion aus, die den Weißen Zwerg zerstörte.

Die Entfernung zum Supernovaüberrest beträgt etwa 7000 Lichtjahre. Somit ereignete sich die Explosion 7000 Jahre vor 1006, als das Licht die Erde erreichte. Stoßwellen im Überrest beschleunigen die Teilchen auf extreme Energien. Sie sind vermutlich eine Quelle der rätselhaften kosmischen Strahlung.

Zur Originalseite

Galaxienhaufen vergrößert ferne Supernova

Der Galaxienhaufen Abell 383 wurde vom Weltraumteleskop Hubble abgebildet. Um die Menge an Dunkler Materie zu bestimmen, wurde eine Supernova beobachtet, die in einer weit dahinter liegenden Galaxie explodierte. Die Bilder mit und ohne Supernova sind links oben eingeblendet.

Bildcredit: NASA, ESA, C. McCully (Rutgers U.) et al.

Wie kalibriert man eine riesige Gravitationslinse? In diesem Fall ist die Linse der Galaxienhaufen Abell 383. Er ist eine massereiche Ansammlung aus Galaxien, heißem Gas und Dunkler Materie. Der Haufen ist etwa 2,5 Milliarden Lichtjahre entfernt (Rotverschiebung z=0,187). Was kalibriert werden muss, ist die Masse des Haufens. Dazu zählt vor allem die Menge und Verteilung der Dunklen Materie.

Kürzlich wurde eine neue Methode zur Kalibrierung getestet. Dabei wartet man, bis sich hinter einem Galaxienhaufen eine sehr spezielle Supernova ereignet. Dabei zeigt sich, wie stark der Haufen die Supernova durch den Gravitationslinseneffekt vergrößert haben muss. Diese Technik ergänzt andere Methoden. Man kann damit berechnen, wie viel Dunkle Materie nötig ist, um die Bewegungen der Galaxien und von heißem Gas im Haufen zu erklären und um die Verzerrung der Gravitationslinsenbilder zu erzeugen.

Der Galaxienhaufen A383 wurde vom Weltraumteleskop Hubble abgebildet. Rechts zeigen die stark verzerrten Galaxien, die weit hinter dem Zentrum des Haufens liegen, dass er als Gravitationslinse geeignet ist.

Links sind zwei Bilder einer fernen Galaxie eingeschoben. Sie entstanden vor und nach einer kürzlich beobachteten Supernova. Bisher wurden zwei kalibrationstaugliche Supernovae vom Typ Ia hinter zwei anderen Galaxienhaufen entdeckt. Das geschah beim Projekt Cluster Lensing And Supernova survey with Hubble (CLASH).

Zur Originalseite

Helle Supernova in M82

Die irreguläre Galaxie M82 im Sternbild Uras Major mitten im Bild ist von wenigen markanten Sternen umgeben.

Bildcredit und Bildrechte: Adam Block, Mt. Lemmon SkyCenter, U. Arizona

Astronom*innen finden Supernovae nicht, indem sie nach Pfeilchen suchen. Auf diesem Bild vom 23. Jänner zeigt ein Pfeil auf eine Supernova in der nahen hellen Galaxie M82. Sie ist jetzt als SN 2014J katalogisiert.

M82 befindet sich am Himmel der Erde nahe beim Großen Wagen. Sie ist auch als Zigarrengalaxie bekannt. Auf der Nordhalbkugel ist sie ein beliebtes Ziel für Teleskope. SN 2014J wurde erstmals am Abend des 21. Januar an der Sternwarte des University College London beobachtet. Der Dozent Steve Fossey sowie Ben Cooke, Tom Wright, Matthew Wilde und Guy Pollack – Teilnehmer eines Astronomie-Workshops – entdeckten die Supernova als unbekannte Quelle in der an sich vertrauten Galaxie.

M82 ist etwa 12 Millionen Lichtjahre entfernt. Somit fand die Explosion der Supernova vor 12 Millionen Jahren statt. Doch ihr Licht erreichte erst jetzt die Erde. Die Supernova SN 2014J ist eine der nächstgelegenen der letzten Jahrzehnte.

Beobachtungen des Spektrums lassen vermuten, dass es eine Supernova vom Typ Ia ist. Das ist die Explosion eines weißen Zwerges, der zuvor Materie eines Begleitsterns ansammelte. Es gibt Schätzungen, wonach SN 2014J in zwei Wochen ihre maximale Helligkeit erreicht. Aber sie ist jetzt schon das hellste Licht in M82. Man sieht sie mit kleinen Teleskopen am Abendhimmel.

Galerie: Supernova in M82

Zur Originalseite

Das Spektrum der Nova Delphini

Das Bild zeigt Spektren von Sternen, das helle Spektrum in der Mitte gehört zur Nova Delphini 2013. Die anderen Spektren sind blasser. Links oben sind zwei ebenfalls hellere Spektren.

Bildcredit und Bildrechte: Jürg Alean

Ende letzter Woche tauchte im Sternbild Delfin ein neuer Stern auf. Sein Spektrum verriet Forschenden seine wahre Natur. Er ist nun als Nova Delphini bekannt. Das Spektrum im sichtbaren Licht hat fast die maximale Helligkeit. Es befindet sich in der Bildmitte des Sternfeldes, das in der Nacht vom 16. auf 17. August mit Prisma und Teleskop an der Schweizer Sternwarte Bülach fotografiert wurde.

Die dunkelsten Bänder im Spektrum der Nova sind starke Absorptionslinien von Wasserstoffatomen. Die starken Absorptionslinien sind an ihrem roten Ende von hellen Emissionsbändern begrenzt. Das Muster ist die spektrale Signatur von Materie, die von einem kataklystischen Doppelsternsystem ausgestoßen wurde. Es handelt sich um eine klassische Nova.

Die anderen Sterne im Sichtfeld sind blasser. Ihre Spektren sind mit Hipparcos-Katalognummer, Helligkeit in Größenklassen und Spektralklasse markiert. Rechts unten ist zufällig auch die blasse Emissionslinie des planetarischen Nebels NGC 6905 angedeutet.

Zur Originalseite

Nova Delphini 2013

Der Hintergrund in der Milchstraße ist dicht von Sternen bedeckt. Oben in der Mitte leuchtet die Nova Delphini 2013, links steht das Sternbild Delphin, unter der Nova das Sternbild Pfeil, rechts unten die Sterngruppe Kleiderbügel (Collinder 399).

Bildcredit und Bildrechte: Jimmy Westlake (Colorado Mountain College)

Am 14. August suchte der japanische Amateurastronom Koichi Itagaki mit einem kleinen Teleskop den Himmel ab. Dabei entdeckte er einen „neuen“ Stern im Sternbild Delfin. Diese Himmelsansicht wurde am 15. August in Stagecoach in Colorado fotografiert. Darauf ist der Stern markiert. Er wird nun als Nova Delphini 2013 bezeichnet.

Sagitta, der Pfeil, zeigt den Weg zur Position des Neulings. Er steht hoch am Abendhimmel in der Nähe des hellen Sterns Altair. Er ist Teil einer Sterngruppe auf der Nordhalbkugel, die als Sommerdreieck bekannt ist. Die Nova sollte mit einem Fernglas gut sichtbar sein. Bei dunklem Himmel ist sie fast mit bloßem Auge erkennbar.

Frühere detailreiche Himmelskarten zeigen an der Position der Nova Delphini einen sehr blasseren Stern der 17. Größenklasse. Das bedeutet, dass die scheinbare Helligkeit dieses Sterns plötzlich um mehr als das 25.000-fache anstieg. Wie kommt es zu so einer katastrophalen Veränderung eines Sterns?

Das Spektrum der Nova Delphini zeigt Hinweise auf eine klassische Nova. Dazu gehört ein wechselwirkendes Doppelsternsystem, in dem einer der Sterne ein dichter, heißer Weißer Zwerg ist. Materie eines kühleren, riesigen Begleitsterns fällt auf die Oberfläche des Weißen Zwergs. Dieser wird immer größer, bis es zu einem thermonuklearen Ereignis kommt. Das führt zu einem drastischen Anstieg der Helligkeit, und eine Hülle wird abgestoßen und dehnt sich aus.

Doch die Sterne werden nicht zerstört. Klassische Novae wiederholen sich vermutlich, wenn der Materiefluss zum Weißen Zwerg erneut auftritt und einen weiteren Ausbruch verursacht.

Galerie: Nova Delphini 2013

Zur Originalseite

Eine schärfere Ansicht von NGC 3370

Die Galaxie NGC 3370 liegt schräg von oben sichtbar im Bild, im Hintergrund sind weiter entfernte Galaxien zu sehen. Das Bild stammt von der ACS des Weltraumteleskops Hubble.

Bildcredit: NASA, ESA, Hubble-Vermächtnis (STScI/AURA); Danksagung: A. Reiss et al. (JHU)

Die Spiralgalaxie NGC 3370 ist fast gleich groß wie unsere Milchstraße und hat einen ähnlichen Aufbau. Sie ist etwa 100 Millionen Lichtjahre entfernt und liegt im Sternbild Löwe. Die schöne Spirale ist von oben sichtbar. Die Advanced Camera for Surveys (ACS) des Weltraumteleskops Hubble bildete die Galaxie sehr detailreich ab. Sie ist ein Blickfang. Das scharfe Bild zeigt auch einige Galaxien im Hintergrund im fernen Universum.

Die Bilddaten von NGC 3370 erwiesen sich als scharf genug, um einzelne veränderliche Sterne zu untersuchen, die als Cepheiden bekannt sind. Mit diesen kann man die Entfernung dieser Galaxie genau bestimmen. NGC 3370 wurde für diese Untersuchung ausgewählt, weil sich 1994 darin eine gut erforschte Sternexplosion ereignete – eine Supernova vom Typ Ia.

Wenn man die Entfernung, die anhand der Cepheiden-Messungen bestimmt wurde, und die Standardkerzen-Supernova mit Beobachtungen weiter entfernter Supernovae kombiniert, kann man die Größe und Ausdehnungsrate des ganzen Universums kalibrieren.

Zur Originalseite