Ein Sonnenfilament bricht aus

Die Sonne ragt von rechts oben ins Bild. Am Sonnenrand links neben der Mitte bricht ein sehr helles Filament aus. Aus diesem dringen Plasmaschleifen, die vom Magnetfeld gelenkt werden. Darunter ist eine riesige Sonnenfackel, die weit über den Sonnenrand hinausreicht.

Bildcredit: NASAGSFC, SDO AIA Team

Was ist mit unserer Sonne passiert? Nichts besonders Ungewöhnliches. Sie stieß nur eine Protuberanz aus. Mitte 2012 explodierte ein lang bestehendes Sonnenfilament plötzlich in den Weltraum hinaus. Es erzeugte einen energiereichen koronalen Massenauswurf (KMA).

Das Magnetfeld der Sonne ändert sich ständig. Es hielt das Filament tagelang in Schwebe. Der Zeitpunkt des Ausbruchs war unerwartet. Das führte zu einer Explosion, die vom Solar Dynamics Observatory (SDO), das um die Sonne kreist, genau beobachtet wurde. Der Ausbruch schleuderte Elektronen und Ionen ins Sonnensystem. Manche davon erreichten die Erde drei Tage später. Sie trafen auf die Magnetosphäre der Erde und erzeugten Polarlichter.

Schleifen aus Plasma umgeben eine aktive Region. Auf dem Ultraviolettbild biegen sie sich über dem ausbrechenden Filament. Letzte Woche fiel die Zahl der sichtbaren Flecken auf der Sonne unerwartet auf Null. Daher vermutet man, dass das sehr ungewöhnliche Maximum auf der Sonne vorüber ist. Während des Maximums im 11-Jahres-Zyklus ist die Sonne am aktivsten.

Zur Originalseite

Fleckiger Sonnenaufgang über Brisbane

Hinter der Silhouette der australischen Stadt Brisbane geht die Sonne auf. Die Sonnenscheiben des Kompositbildes steigen links immer höher.

Bildcredit und Bildrechte: Stephen Mudge

Das zusammengesetzte Stadtbild zeigt die ersten Farben der Dämmerung. Sie steigen hinter den Lichtern der Silhouette von Brisbane auf. Die Stadt liegt in der südöstlichen Ecke von Queensland in Australien. Mit einem Sonnenfilter entstanden alle 3,5 Minuten zusätzliche Aufnahmen. Sie folgen dem Sonnenaufgang im Winter am 8. Juli.

Sonnenflecken kreuzten die Vorderseite der Sonne. Manche sind so groß wie ein Planet. Die Flecken sind aktive Regionen auf der Sonnen mit verworrenen Magnetfeldern. Das Maximum des Zyklus an Sonnenaktivität ist zwar schon vorbei. Doch die aktiven Regionen bilden immer noch intensive Sonnenfackeln und Ausbrüche. Dabei schleudern koronale Massenauswürfe (KMA) manchmal riesige Wolken energiereicher Teilchen ins Sonnensystem.

Zur Originalseite

Orange Sonne sprüht Funken

Das Bild der Sonne wurde invertiert und eingefärbt. Daher ist der orangefarbene Ball in der Mitte dunkler und am Rand sehr hell. Am Rand ragen helle Sonnenfackeln auf, in der Mitte und oben sind größere dunkle Regionen.

Bildcredit und Bildrechte: Alan Friedman (Averted Imagination)

Unsere Sonne ist neuerdings ziemlich unruhig. Erst vor zwei Wochen wurde sie fotografiert, als viele stürmische Regionen zu sehen waren. Eine davon war die aktive Sonnenfleckengruppe AR 2036 oben und AR 2038 in der Mitte. Vor erst vier Jahren endete ein ungewöhnlich ruhiges Minimum an Sonnenflecken. Es hatte vier Jahre gedauert.

Dieses Bild entstand in der speziellen Lichtfarbe H-Alpha. Es wurde umgekehrt und gefärbt. Spikulen bedecken die Sonnenvorderseite wie ein Teppich. Zum Rand hin wird die Sonne allmählich heller. Der Effekt entsteht durch die zunehmende Absorption des kühleren Sonnengases. Er wird als Randverdunkelung bezeichnet.

Mehrere faserartige Protuberanzen ragen über die Sonnenränder. An der Vorderseite der Sonne sind Protuberanzen als helle Schlieren zu sehen. Besonders interessant sind die magnetisch verhedderten aktiven Regionen. Dazu gehören relativ kühle Sonnenflecken, die hier als weiße Flecken dargestellt sind.

Ein Sonnenmaximum ist die aktivste Phase im magnetischen 11-Jahres-Zyklus. Beim aktuellen Maximum erzeugt das verworrene Magnetfeld viele „Sonnenfunken”. Dazu zählen ausbrechende Protuberanzen, Koronale Massenauswürfe und Fackeln. Sie stoßen Teilchenwolken aus. Diese können die Erde treffen und Polarlichter auslösen.

Vor zwei Jahren stieß eine Fackel eine Flut geladener Teilchen ins Sonnensystem. Sie war so heftig, dass sie Satelliten stören und Stromnetze gefährden hätten können, wenn sie den Planeten Erde getroffen hätte.

Aktuell: APOD-Vortrag am 17. Juni in Paris

Zur Originalseite

Die Sonne rotiert


Videocredit: SDO, NASA; Digitale Anordnung: Kevin Gill (Apoapsys)

Verändert sich die Sonne, während sie rotiert? Ja. Manche Änderungen sind subtil, andere dramatisch. Das Solar Dynamics Observatory (SDO) der NASA bildete unsere Sonne ab. Die Zeitrafferabläufe zeigen ihre Rotation im Jänner.

Auf dem großen Bild links ist die Chromosphäre der Sonne im Ultraviolettlicht abgebildet. Das kleinere, hellere Bild oben in der Mitte zeigt zeitgleich die vertrautere Photosphäre der Sonne in sichtbarem Licht. Die anderen kleinen Sonnenbilder stammen von Röntgenemissionen relativ seltener Eisenatome. Sie treten in unterschiedlicher Höhe der Korona auf. Alle sind in Falschfarben dargestellt, um die Unterschiede zu betonen.

Die Sonne braucht etwas weniger als einen Monat für eine ganze Rotation. Am schnellsten rotiert der Äquator. Kurz nach Beginn des Videos kommt eine große aktive Sonnenfleckenregion in Sicht. Zarte Effekte sind Veränderungen der Oberflächentextur und die Form der aktiven Regionen. Dramatischen Ereignisse sind zahlreiche Blitze in aktiven Regionen und flatternde oder ausbrechende Protuberanzen am ganzen Sonnenrand.

Dieses Jahr nähert sich unsere Sonne ihrer maximalen Sonnenaktivität. Die Aktivität folgt einem magnetischen 11-Jahres-Zyklus. Am Ende des Videos rotiert dieselbe große aktive Sonnenfleckenregion ins Bild zurück, die anfangs erwähnt wurde. Sie sieht nun anders aus.

Zur Originalseite

Sonnenfleckenschleifen in Ultraviolett

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: TRACE-Projekt, NASA

Es war ein ruhiger Tag auf der Sonne. Dieses Bild zeigt aber, dass die Sonnenoberfläche sogar an Ruhetagen recht lebhaft ist. Die relativ kühlen dunklen Regionen sind in Ultraviolett gezeigt. Sie haben Temperaturen von Tausenden Grad Celsius.

Die große Sonnenfleckengruppe AR 9169 vom letzten Sonnenzyklus ist die helle Region nahe am Horizont. Um die Sonnenflecken herum fließt hell leuchtendes Gas. Seine Temperatur beträgt mehr als eine Million Grad Celsius. Der Grund für die hohen Temperaturen ist nicht bekannt. Doch er hängt vermutlich mit den sich rasch verändernden Magnetfeldschleifen zusammen, die das Plasma der Sonne kanalisieren.

Die große Sonnenfleckengruppe AR 9169 wanderte im September 2000 über die Sonne und verschwand nach wenigen Wochen wieder.

Zur Originalseite

Sonnenflecken bei Sonnenuntergang

Die Sonne ist von der Lufthülle der Erde stark verzerrt. Links ist eine große Sonnenfleckengruppe, oben ein blauer Rand, unten ein roter.

Bildcredit und Bildrechte: Jürg Alean

Sonnenuntergänge sind ein häufig beobachtetes Himmelsereignis. Kürzlich boten Sonnenuntergänge eine Zugabe. Ein Sonnenfleck zog von links nach rechts mitten über die Sonnenscheibe. Die Sonne war hier von der Erdatmosphäre gedämpft und verzerrt. Der Fleck war so groß, dass er mit bloßem Auge sichtbar war. Er wurde am 5. Jänner bei Sonnenuntergang in der Schweiz fotografiert.

Detailansichten zeigen eine große aktive Sonnenregion. Die Sonnenflecken sind teilweise größer als der Planet Erde. Die Gruppe wurde als Aktive Region AR 1944 katalogisiert. Am 7. Jänner stieß sie eine beachtliche Sonneneruption und einen koronalen Massenauswurf (Coronal Mass Ejection, CME) aus. Er könnte die Erde erreichen und am 9. Jänner einen geomagnetischen Sturm mit Polarlichtern auslösen.

Zur Originalseite

Sonnenfleck bei Sonnenuntergang

Auf dem Cedar Creek Lake südöstlich der texanischen Stadt Dallas schwimmen viele Schiffchen. Dahinter geht die Sonne unter. Sie ist in der Abenddämmerung gerötet und verzerrt. Mitten auf der Sonnenscheibe ist ein Sonnenfleck erkennbar.

Bildcredit und Bildrechte: Jo Hunter

Die geröteten Strahlen der untergehenden Sonne fluteten am 6. Juli den Himmel über dem Cedar Creek Lake südöstlich der texanischen Stadt Dallas auf der Erde. Sonnenuntergänge sind die vielleicht am häufigsten beobachteten Himmelsereignisse. Doch dieser bot sogar noch etwas mehr.

Die Szene des Sonnenuntergangs zeigt die Sonnenscheibe von der dichten Erdatmosphäre abgeblendet und verzerrt. Nahe der Mitte ist ein Sonnenfleck. Er war so groß, dass er mit bloßem Auge sichtbar war. Teleskopansichten zeigten, dass der Fleck ein Komplex aus großen aktiven Regionen ist. Manche der Sonnenflecken, aus denen er besteht, sind größer als der Planet Erde.

Zur Originalseite

Große Sonnenflecken kreuzen nun die Sonne

Bildfüllend ist die Sonnenfleckengruppe AR 11785 dargestellt. Sie besitzt deutlich ausgeprägte Umbrae und gefaserte Penumbrae. Die Gruppe ist in einen Teppich aus Granulation eingebettet. Jede Granule ist etwa 1000 Kilometer groß.

Bildcredit und Bildrechte: Damian Peach

Eine der größten Sonnenfleckenregionen der letzten Jahre kreuzt die Sonne. Die Region mit verschlungenen Magnetfeldern kann leicht eine Sonneneruption hervorbringen. Dabei schleudert sie eine Wolke energiereicher Teilchen ins Sonnensystem.

Wenn eine gewaltige Wolke das Magnetfeld der Erde trifft, kann sie gefährlich werden, und zwar für Astronauten* und Satelliten in der Erdumlaufbahn. Auch weniger energiereiche Wolke können beim Aufprall auf die Erde malerische Polarlichter erzeugen.

Diese Sonnenfleckenregion war vor zwei Tagen so zu sehen. Die ganze Region ist als AR 11785 katalogisiert. Der linke Teil ist AR 11787. Dunkle Sonnenfleckenregionen enthalten fast senkrecht aufsteigende Magnetfelder. Sie werden Umbrae genannt. Die bronzefarbenen Regionen außen herum haben deutlich ausgeprägte gefaserte magnetische Flussröhren. Sie sind die Penumbrae.

Aufgewühlte Sonnengranulen sind bis zu 1000 Kilometer groß. Sie bedecken die gelbe Hintergrundregion. Niemand weiß, wie sich diese Sonnenfleckenregion entwickelt. Doch Weltraumwetterforschende beobachten sie genau.

Zur Originalseite