Fasern der aktiven Galaxie NGC 1275

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble Legacy Archive, ESA, NASA; Bearbeitung und Bildrechte: Domingo Pestana

Beschreibung: Was hält die Fasern an dieser Galaxie?

Die Fasern bleiben in NGC 1275 bestehen, obwohl der Tumult galaktischer Kollisionen sie zerstört haben sollten. Die aktive Galaxie NGC 1275 ist das zentrale markante Mitglied des großen, relativ nahen Perseus-Galaxienhaufens. Die aktive Galaxie sieht in sichtbaren Wellenlängen wild aus, sie ist auch eine gewaltige Quelle an Röntgen– und Radioemissionen.

NGC 1275 sammelt Materie, indem ganze Galaxien hineinfallen und letztlich ein sehr massereiches Schwarzes Loch im Kern der Galaxie füttern. Dieses Kompositbild, das aus Archivdaten des Weltraumteleskops Hubble nachgebaut wurde, betont die entstandenen galaktischen Trümmer und Fasern aus leuchtendem Gas, manche sind bis zu 20.000 Lichtjahre lang.

Beobachtungen lassen vermuten, dass die Strukturen, die durch die Aktivität des Schwarzen Lochs vom Galaxienzentrum ausgestoßen werden, durch Magnetfelder zusammengehalten werden. NGC 1275, auch bekannt als Perseus A, ist größer als 100.000 Lichtjahre und etwa 230 Millionen Lichtjahre entfernt.

Zur Originalseite

Wachsendes Schwarzes Loch mit Strahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, Swift, Aurore Simonnet (Sonoma State U.)

Beschreibung: Was passiert, wenn ein Schwarzes Loch einen Stern verschlingt?

Viele Details sind noch unbekannt, doch aktuelle Beobachtungen liefern neue Hinweise. 2014 wurde von den bodengebundenen Roboterteleskopen des Projekts der automatisierten Ganzhimmelssuche nach Supernovae (ASAS-SN) eine mächtige Explosion beobachtet und weiterverfolgt, unter anderem von den Instrumenten des NASASatelliten Swift im Erdorbit. Computermodelle dieser Emissionen passen zu einem Stern, der von einem fernen, sehr massereichen Schwarzen Loch auseinandergerissen wird. Die Ergebnisse einer solchen Kollision sind auf dieser künstlerischen Darstellung dargestellt.

Das Schwarze Loch selbst ist als winziger schwarzer Punkt in der Mitte dargestellt. Wenn Materie ins Loch fällt, kollidiert sie mit anderer Materie und erhitzt sich. Das Schwarze Loch ist von einer Akkretionsscheibe aus heißer Materie umgeben, die einst der Stern war, und aus der Rotationsachse des Schwarzen Lochs strömt ein Strahl.

Zur Originalseite

Im Zentrum der Spiralgalaxie NGC 5033

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, MASTBearbeitung: Judy Schmidt

Beschreibung: Was geschieht im Zentrum der Spirale NGC 5033? Viele Dinge – einige laufen rund, andere sind energiereich, und manche verstehen wir nicht gut. NGC 5033 ist wegen der großen Aktivität in ihrem Kern als Seyfertgalaxie bekannt. Helle Sterne, dunkler Staub und interstellares Gas wirbeln schnell um ein galaktisches Zentrum, das durch ein sehr massereiches Schwarzes Loch leicht verschoben erscheint. Diese Verschiebung trat vermutlich ein, weil NGC 5033 irgendwann in der letzten Milliarde Jahre mit einer anderen Galaxie verschmolz.

Dieses Bild wurde 2005 mit dem Weltraumteleskop Hubble fotografiert. NGC 5033 ist etwa 100.000 Lichtjahre groß und so weit entfernt, dass wir sehen, wie sie vor ungefähr 40 Millionen Jahren aussah.

Zur Originalseite

NGC 4696: Fasern um ein Schwarzes Loch

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, A. Fabian

Beschreibung: Was geschieht im Zentrum der elliptischen Galaxie NGC 4696? Auf diesem kürzlich veröffentlichten Bild des Weltraumteleskops Hubble wurden darin lange Tentakel aus Gas und Staub sehr detailreich abgebildet. Diese Fasern verlaufen anscheinend zur Zentralregion der Galaxie, die vermutlich von einem sehr massereichen Schwarzen Loch besetzt ist. Es gibt Hinweise, dass dieses Schwarze Loch Energie abzieht, die das umgebende Gas erhitzt, kühlere Fasern aus Gas und Staub ausstößt und die Sternbildung beendet. Diese Fasern werden von Magnetfeldern in Schwebe gehalten, scheinen dann auf spiralförmigen Bahnen zum zentralen Schwarzen Loch zu laufen und schließlich dieses zu umkreisen.

NGC 4696 ist die größte Galaxie im Zentaurus-Galaxienhaufen, der etwa 150 Millionen Lichtjahre von der Erde entfernt ist. Dieses Bild zeigt eine ungefähr 45.000 Lichtjahre breite Region.

Zur Originalseite

Arp 299: Schwarze Löcher in kollidierenden Galaxien

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, GSFC, Hubble, NuSTAR

Beschreibung: Spuckt nur ein schwarzes Loch energiereiche Strahlung – oder zwei? Um das herauszufinden, richteten Astronomen das NASA-Teleskop NuSTAR im Erdorbit auf die rätselhaften kollidierenden Galaxien Arp 299, welche die Strahlung ausstoßen. Die beiden Galaxien von Arp 299 sind für Millionen Jahre in einem Gravitationskampf gefangen, während ihre zentralen Schwarzen Löcher bald selbst kämpfen werden.

Dieses hoch aufgelöste Bild in sichtbarem Licht wurde von Hubble fotografiert. Das darübergelegte diffuse Röntgenleuchten wurde von NuSTAR abgebildet und ist in Falschfarbenrot, -grün und -blau dargestellt. Die NuSTAR-Beobachtungen zeigen bei nur einem der zentralen Schwarzen Löcher, wie es sich durch eine Region aus Gas und Staub kämpft und dabei Materie absorbiert und Röntgenlicht abstrahlt. Die energiereiche Strahlung stammt nur vom rechten Galaxienzentrum und entsteht sicherlich in der Nähe – jedoch außerhalb – des Ereignishorizonts des zentralen Schwarzen Loches. In Milliarden Jahren bleibt nur eine Galaxienkomponente übrig und nur ein zentrales massereiches Schwarzes Loch. Bald danach stürzt sich jedoch eine andere Galaxie ins Getümmel.

Zur Originalseite

Zwei Schwarze Löcher verschmelzen


Simulations-Credit: Simulating eXtreme Spacetimes Project

Beschreibung: Drücken Sie auf „Wiedergabe“ und beobachten Sie, wie zwei Schwarze Löcher verschmelzen. Diese Videosimulation, angeregt durch den ersten direkten Nachweis von Gravitationswellen durch LIGO, läuft in Zeitlupe und würde in Echtzeit etwa eine Drittelsekunde dauern. Die Schwarzen Löcher sind auf einer kosmischen Bühne vor Sternen, Gas und Staub positioniert. Ihre enorme Gravitation bricht das Licht hinter ihnen in Einsteinringe, während sie sich einander auf Spiralbahnen nähern und schließlich zu einem einzigen Schwarzen Loch verschmelzen. Die unsichtbaren Gravitationswellen, die bei der rasanten Verschmelzung der massereichen Objekte entstehen, führen zum Kräuseln des sichtbaren Bildes und schwappen noch nach der Verschmelzung der Schwarzen Löcher innen und außen über die Einsteinringe. Die von LiIGO aufgespürten Gravitationswellen mit der Bezeichnung GW150914 passen zur Verschmelzung Schwarzer Löcher mit 36 und 29 Sonnenmassen in einer Entfernung von 1,3 Milliarden Lichtjahren. Das finale einzelne Schwarze Loch besitzt 62 Sonnenmassen, die restlichen drei Sonnenmassen wurden in Energie in Form von Gravitationswellen umgewandelt.

Zur Originalseite

Massereiches Schwarzes Loch zerfetzt vorbeiziehenden Stern

Rechte am Illustrationsvideo: Raumfahrtzentrum Goddard der NASA, CI Lab

Was passiert, wenn ein Stern einem Schwarzen Loch zu nahe kommt? Kürzlich beobachteten Observatorien im Weltraum ein Ereignis im Zentrum einer fernen Galaxie, das als ASASSN-14li bezeichnet wird. Es erzählt anscheinend die zermürbende Geschichte eines Sterns. Eine genaue Auflösung ist zwar nicht möglich, doch Schwankungen im energiereichen Licht lassen vermuten, dass ein Teil des Sterns zerfetzt wurde und eine wirbelnde Scheibe um den dunklen Abgrund bildete.

Diese Video-Illustration zeigt das mögliche Szenario. Ein Strahl verläuft entlang der Rotationsachse des Schwarzen Lochs. Der weiß gefärbte innerste Teil der Scheibe leuchtet im Röntgenlicht am hellsten. Er treibt vielleicht einen periodischen, blau dargestellten Wind an.

Künftige Beobachtungen in Röntgen- und Ultraviolettlicht von Sternzerstörungen durch Schwarze Löcher – auch im Zentrum unserer Milchstraße – versprechen uns mehr Information zur komplexen Dynamik, die sich in einigen der heißesten Orte mit der stärksten Gravitation im Universum entwickelt.

Galerie: Venus-, Jupiter- und Marskonjunktion im Oktober
Zur Originalseite

Wenn Schwarze Löcher kollidieren


Videocredit und -rechte: Simulating Extreme Spacetimes Collaboration

Beschreibung: Was geschieht, wenn zwei Schwarze Löcher zusammenstoßen? Dieses Extremszenario tritt wahrscheinlich in den Zentren einiger verschmelzender Galaxien und Mehrfachsternsysteme auf. Das hier gezeigte Video zeigt die Computeranimation des Endstadiums einer solchen Verschmelzung, bei der die Gravitationslinseneffekte betont wurden, die vor dem Sternenfeld im Hintergrund zu beobachten wären. Die schwarzen Regionen markieren die Ereignishorizonte des dynamischen Duos, während ein umgebender Ring aus sich verschiebenden Hintergrundsternen die Position ihres gemeinsamen Einsteinrings. Von allen Hintergrundsternen sind nicht nur außerhalb dieses Einsteinrings Bilder sichtbar, sondern auch ein oder mehrere Begleitbilder im Inneren. Schlussendlich verschmelzen die beiden Schwarzen Löcher. Die Endstadien solcher Verschmelzungen könnten zu einem starken, vorhersagbaren Ausbruch an Gravitationsstrahlung führen, das ist eine Nachstrahlung, nach der intensiv gesucht wird, sie hat eine völlig andere Natur als Licht und wurde bisher noch nie direkt beobachtet.

Weltraum-Musikvideo: APOD-Bilder vom September 2015
Zur Originalseite