Aussicht in der Nähe eines Schwarzen Lochs

Ein roter Strudel reicht wie ein Trichter in die Tiefe, unten leuchtet eine helle Kugel, von der ein Strahl senkrecht aufsteigt.

Illustrationscredit: April Hobart, CXC

Mitten in einem Strudelbecken aus heißem Gas sitzt wahrscheinlich ein Ungeheuer, das noch nie direkt zu sehen war: ein Schwarzes Loch. Wenn man das helle Licht untersucht, das vom wirbelnden Gas abgestrahlt wird, bietet das häufig nicht nur Hinweise auf ein Schwarzen Lochs, sondern auch auf seine wahrscheinlichen Eigenschaften.

Man fand heraus, dass das Gas um beispielsweise GRO J1655-40 ungewöhnlich flackert. 450 Mal pro Sekunde flackert dieses Gas. Eine frühere Abschätzung der Masse des Objekts im Zentrum ergab sieben Sonnenmassen. Daher kann die Frequenz des schnellen Flackerns durch ein Schwarzes Loch erklärt werden, das sehr schnell rotiert.

Welche physikalischen Mechanismen das Flackern und eine langsamere quasiperiodische Schwingung in Akkretionsscheiben um Schwarze Löcher und Neutronensterne verursacht, wird noch erforscht.

Zur Originalseite

Die wolkigen Kerne aktiver Galaxien

Bildcredit: NASA / GSFC, W. Steffen (UNAM)

Wie sieht es aus, wenn man ins Zentrum einer aktiven Galaxie reist? Vermutlich enthalten die meisten Galaxienzentren Schwarze Löcher. Sie sind Millionen Mal massereicher als unsere Sonne. Die Räume um diese sehr massereichen Schwarzen Löcher sind wohl alles andere als ruhig. Sie flackern in vielen Farben. Daher trägt die gesamte Objektklasse die Bezeichnung Aktiver Galaxienkern.

Dieses Video zeigt, wie ein aktiver galaktischer Kern aus der Nähe aussehen könnte. Aktive Galaxienkerne besitzen meist massereiche Akkretionsscheiben, die das zentrale Schwarze Loch speisen. Mächtige Strahlen schießen elektrisch geladene Materie weit hinaus ins umgebende Universum.

Wolken aus Gas und Staub kreisen um die zentralen Schwarzen Löcher. In jüngster Zeit erkannte man, dass die Wolken so dicht sind, dass sie sogar die alles durchdringenden Röntgenstrahlen ausblenden können, sodass sie uns nicht erreichen. Solche Trübungen von Röntgenlicht können Stunden oder Jahre dauern. Das wurden bei der Analyse von Daten entdeckt, die in mehr als einem Jahrzehnt vom RossiX-ray-Timing-Explorer (RXTE) der NASA gewonnen wurden.

Ist eure Postkarte angekommen? Seht nach!

Zur Originalseite

Schwere Strahlen eines Schwarzen Lochs in 4U1630-47

Das Bild ist eine Illustration des Sternsystems 4U1630-47. Links in der Mitte ist eine rotierende Scheibe, außen rot, innen gelb. Nach oben und unten schießt senkrecht zur Scheibe ein Strahl heraus. Rechts ist ein großer, blauweißer Stern, von dem Materie zur Akkretionsscheibe fließt.

Illustrationscredit: NASA, CXC, M. Weiss

Woraus bestehen die Strahlen eines Schwarzen Lochs? Viele Schwarze Löcher in Sternsystemen sind vermutlich von Scheiben umgeben. Sie bestehen aus Gas und Plasma, das durch Gravitation von einem nahen Begleitstern abgesaugt wird. Ein Teil dieser Materie wird vom Sternsystem als mächtiger Strahl ausgestoßen, nachdem sie sich dem Schwarzen Loch genähert hat. An den Polen des rotierenden Schwarzen Lochs strömt ein Strahl nach oben und einer nach unten.

Es gibt aktuelle Hinweise, dass diese Strahlen nicht nur aus Elektronen und Protonen bestehen, sondern auch aus den Kernen schwerer Elemente wie Eisen und Nickel. Die Entdeckung wurde im System 4U1630-47 gemacht, und zwar mit einer kompakten Anordnung an Radioteleskopen im Osten Australiens, die von CSIRO betrieben wird, sowie mit dem Satelliten XMM-Newton der Europäischen Weltraumorganisation in der Erdumlaufbahn.

Das Sternsystem 4U1630-47 ist oben künstlerisch dargestellt. Rechts ragt ein großer blauer Stern ins Bild. Von einem Schwarzen Loch im Zentrum der Akkretionsscheibe links strömen Strahlen nach oben und unten. Das Sternsystem 4U1630-47 enthält vermutlich nur ein kleines Schwarzes Loch mit wenigen Sonnenmassen. Trotzdem ist die Schlussfolgerung aus dieser Beobachtung bedeutsam, nämlich dass auch größere Schwarze Löcher Strahlen mit massereichen Kernen ins Universum ausstoßen.

Klick in den Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Der stille Sagittarius A*

Im Bild sind rote gewundene nebelige Arme verteilt, darin sind gelbe und blaue unscharfe Lichtflecken verteilt. In der Mitte ist ein Quadrat markiert, das rechts oben vergrößert dargestellt ist. Es zeigt eine Nebelstruktur mit einem hellen Zentrum.

Bildcredit: Röntgen – NASA / CXC / Q. Daniel Wang (UMASS) et al., Infrarot – NASA/STScI

Heißes Gas ist schwer zu schlucken. Das gilt anscheinend auch für das extrem massereiche Schwarze Loch im Zentrum unserer Galaxis. Das Schwarze Loch in der Milchstraße ist als die Quelle Sagittarius A* bekannt. Es befindet sich in der Mitte dieses Komposits. Darauf ist Infrarot in roten und gelben Farbtönen dargestellt, Röntgenstrahlung in blauen Farben.

Eine unscharfe Emission umgibt das Schwarze Loch. Sie wurde im Rahmen einer umfangreichen Beobachtungskampagne mit dem Röntgenteleskop Chandra aufgenommen. Der eingefügte Ausschnitt zeigt die Nahaufnahme im Detail, er ist etwa 1/2 Lichtjahr breit. Das galaktische Zentrum ist ungefähr 26.000 Lichtjahre entfernt.

Astronomen* fanden heraus, dass die Röntgenemission von heißem Gas stammt, das aus den Winden massereicher junger Sterne in der Region abgezogen wird. Die Chandra-Daten zeigen, dass höchstens ein Prozent des Gases im Gravitationsbereich des Schwarzen Loches jemals den Ereignishorizont erreicht und genug Hitze und Drehimpuls verliert, um in das Schwarze Loch zu stürzen. Der Rest des Gases entweicht als Ausfluss.

Das Ergebnis erklärt, warum das zentrale Schwarze Loch in der Milchstraße so ruhig ist. Es ist viel blasser, als man im energiereichen Röntgenspektralbereich erwarten würde. Das gilt wahrscheinlich für die meisten extrem massereichen Schwarzen Löcher in Galaxien im nahen Universum.

Zur Originalseite

Ein Schwarzes Loch in der Photonensphäre umkreisen

Bildcredit und Bildrechte: Robert Nemiroff (MTU)

Was würden wir sehen, wenn wir zu einem Schwarzen Loch kommen? Ein besonders interessanter Ort in der Nähe eines Schwarzen Loches ist seine Photonensphäre. Dort können Photonen es umkreisen. Dieser Bereich ist 50 Prozent weiter vom Innersten entfernt als der Ereignishorizont.

Wenn ihr von der Photonensphäre eines Schwarzen Loches nach außen blickt, wäre der halbe Himmel ganz schwarz. Die andere Hälfte wäre ungewöhnlich hell. Was sich hinter eurem Kopf befindet, wäre in der Mitte zu sehen.

Dieses computeranimierte Video zeigt diese Aussicht von der Photonensphäre aus. Die untere Region erscheint schwarz, weil alle Lichtstrahlen in dieser dunklen Region vom Schwarzen Loch ausgehen müssten. Das Schwarze Loch strahlt aber natürlich kein Licht ab. Die obere Hälfte des Himmels leuchtet dagegen ungewöhnlich hell und blau verschoben.

Zur Hell-dunkel-Teilung in der Mitte hin tauchen immer mehr vollständige Himmelsbilder auf. Diese Hell-Dunkel-Teilung ist die Photonensphäre. Dort befinden wir uns. Da hier Photonen kreisen können, kreist auch Licht von hinter dem Kopf um das Schwarze Loch und gelangt so ans Auge. Kein Ort am Himmel ist hier verborgen. Sterne, die hinter dem Schwarzen Loch vorbeiwandern, schwirren scheinbar schnell um einen Einsteinring herum. Der Einsteinring erscheint oben als waagrechte Linie. Er ist etwa ein Viertel der Bildhöhe vom oberen Rand des Videos entfernt.

Dieser Film ist Teil einer Videoserie, die den Raum in der Nähe des Ereignishorizonts eines Schwarzen Loches visuell erforscht.

(Hinweis: Der Urheber des Videos, Robert Nemiroff, ist einer der APOD-Herausgeber.)

Zur Originalseite

Um ein Schwarzes Loch kreisen

Bildcredit und Bildrechte: Robert Nemiroff (MTU)

Wie sieht es aus, wenn man um ein Schwarzes Loch kreist? Die starke Gravitation des Schwarzen Loches lenkt die Bahnen von Licht stark ab. Daher wäre die Umgebung sehr merkwürdig.

Erstens könnte man den ganzen Himmel sehen, weil sogar das Licht der Sterne hinter dem Schwarzen Loch zum Betrachter gelenkt würde. Außerdem wäre der Himmel in der Nähe des Schwarzen Lochs stark verzerrt. Dabei würden zum Schwarzen Loch hin immer mehr Bilder des gesamten Himmels sichtbar. Das visuell Auffälligste wäre aber, dass das äußerste Himmelsbild vollständig in einem leicht erkennbaren Kreis enthalten wäre, einem sogenannten Einsteinring.

Das oben gezeigte, wissenschaftlich korrekte Video wurde mit Computern erstellt. Es zeigt, was man sieht, wenn man ein Schwarzes Loch umkreist. Sterne, die fast genau hinter dem Schwarzen Loch vorbeiziehen, wandern sehr schnell um den Einsteinring herum. Sternbilder in der Nähe des Einsteinrings bewegen sich scheinbar schneller als Licht, doch kein Stern bewegt sich tatsächlich so schnell.

Dieses Video ist Teil einer Serie, die den Weltraum in der Nähe des Ereignishorizonts eines Schwarzen Loches visuell erforscht.

Hinweis: Der Urheber des Videos, Robert Nemiroff, ist einer der APOD-Herausgeber.

Zur Originalseite

Rotationsbeschleunigung eines massereichen Schwarzen Lochs

Das Bild zeigt eine schräg liegende orange beleuchtete Akkretionsscheibe, aus der Mitte strömt ein blau leuchtender Jet.

Illustrations-Credit: Robert Hurt, NASA/JPL-Caltech

Wie schnell kann ein Schwarzes Loch rotieren? Wenn sich ein Objekt aus normaler Materie zu schnell dreht, bricht es auseinander. Doch ein Schwarzes Loch sollte nicht auseinanderbrechen können – und seine maximale Rotationsgeschwindigkeit ist tatsächlich nicht bekannt.

Theoretiker* modellieren schnell rotierende Schwarze Löcher üblicherweise mit der Kerr-Metrik zu Einsteins Allgemeiner Relativitätstheorie. Diese sagt mehrere überraschende und ungewöhnliche Dinge vorher. Die vielleicht am einfachsten nachprüfbare Prognose besagt, dass Materie, die in ein mit maximaler Geschwindigkeit rotierendes Schwarzes Loch fällt, zuletzt sichtbar sein sollte, wenn sie das Schwarze Loch fast mit Lichtgeschwindigkeit umkreist. Das sollte man aus großer Entfernung beobachten können.

Diese Prognose wurde kürzlich mit den Satelliten NuSTAR der NASA und XMM der ESA untersucht. Dafür wurde das sehr massereiche Schwarze Loch im Zentrum der Spiralgalaxie NGC 1365 beobachtet.

Die Grenze nahe der Lichtgeschwindigkeit wurde bestätigt, indem man die Aufheizung und die Verbreiterung der Spektrallinien von Kernemissionen nahe dem inneren Rand der Akkretionsscheibe vermaß.

Die künstlerische Darstellung oben zeigt eine Akkretionsscheibe aus normaler Materie, die um ein Schwarzes Loch wirbelt, und einen Strahl, der aus der Oberseite strömt. Materie, die zufällig in das Schwarze Loch fällt, sollte die Rotation eines Schwarzen Lochs nicht so stark beschleunigen. Daher bestätigen die Messungen von NuSTAR und XMM auch die Existenz der umgebenden Akkretionsscheibe.

Zur Originalseite

Die nahe Spiralgalaxie NGC 4945

Schräg im Bild ist eine von vielen Sternen umgebene Spiralgalaxie. Sie wirkt etwas unruhig und asymmetrisch. Links leuchtet sie etwas heller. Sie ist von vielen dunklen Staubwolken überzogen. Sie ist von schräg oben fast von der Seite zu sehen.

Bildcredit und Bildrechte: SSRO-South, J. Harvey, S. Mazlin, D. Verschatse, J. Joaquin Perez, (UNC/CTIO/PROMPT)

Die große Spiralgalaxie NGC 4945 ist in der Mitte dieses kosmischen Porträts von der Seite zu sehen. NGC 4945 ist fast gleich groß wie unsere Milchstraße. Ihre staubhaltige Scheibe, die jungen blauen Sternhaufen und rosaroten Sternbildungsregionen treten auf diesem scharfen farbigen Teleskopbild markant hervor.

NGC 4945 liegt im ausgedehnten südlichen Sternbild Zentaur. Sie ist etwa 13 Millionen Lichtjahre entfernt. Damit ist sie nur sechsmal weiter von der Milchstraße entfernt als die nächstgelegene große Spiralgalaxie, die Andromedagalaxie.

Zwar ist die Zentralregion der Galaxie für optische Teleskope großteils verborgen. Doch Röntgen- und Infrarotbeobachtungen zeigen beträchtliche Emissionen im Hochenergiebereich sowie Sternbildung im Kern von NGC 4945. Ihr verdeckter aktiver Kern kennzeichnet das schöne Inseluniversum als Seyfertgalaxie. Sie ist ein wahrscheinlicher Ort für ein zentrales, extrem massereiches Schwarzes Loch.

Zur Originalseite