Die Reise zum Mittelpunkt der Galaxis


Videocredit: ESO/MPE/Nick Risinger (skysurvey.org)/VISTA/J. Emerson/Digitized Sky Survey 2

Beschreibung: Welche Wunder liegen im Zentrum unserer Galaxis? Im Science-Fiction-Klassiker „Reise zum Mittelpunkt der Erde“ von Jules Verne finden Professor Liedenbrock und seine Begleiter viele seltsame, aufregende Wunder.

Astronomen kennen bereits einige seltsame Objekte im Zentrum unserer Galaxis, darunter gewaltige kosmische Staubwolken, helle Sternhaufen, wirbelnde Ringe aus Gas und sogar ein extrem massereiches Schwarzes Loch. Ein Großteil des galaktischen Zentrums ist im sichtbaren Licht durch dazwischen liegenden Staub und Gas vor unserer Sicht verborgen, doch man kann in anderen Wellenlängen der elektromagnetischen Strahlung forschen.

Dieses Video ist eigentlich eine digitale Sondierung des Zentrums der Milchstraße, die mit Bildern der Digitisierten Himmelsdurchmusterung im sichtbaren Licht beginnt. Im weiteren Verlauf des Films verschiebt sich das gezeigte Licht zum Staub durchdringenden Infrarot und zeigt Gaswolken, von denen man 2013 herausfand, dass sie in das zentrale Schwarze Loch stürzen.

Im Mai 2018 zeigten Beobachtungen eines Sterns, der nahe am zentralen Schwarzen Loch in der Milchstraße vorbeizog, zum allerersten Mal eine Gravitationsrotverschiebung im Licht des Sterns – was laut Einsteins allgemeiner Relativitätstheorie zu erwarten war.

Höhepunkte: Aktuelle totale Mondfinsternis

Zur Originalseite

Neutrino trifft zeitgleich mit fernem Blazarstrahl ein

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: DESY, Labor für Wissenschaftskommunikation

Beschreibung: Mit Geräten, die unter dem Südpol der Erde tief im Eis eingefroren sind, hat die Menschheit anscheinend ein Neutrino aus dem fernen Universum entdeckt. Falls das bestätigt wird, markiert es den ersten eindeutigen Nachweis kosmologisch weit entfernter Neutrinos und den Beginn eines beobachteten Zusammenhangs zwischen energiereichen Neutrinos und kosmischer Strahlung, die durch mächtige Ströme aus aufflackernden Quasaren (Blazare) erzeugt werden.

Nachdem der antarktische IceCube-Detektor im September 2017 ein energiereiches Neutrino gemessen hatte, begannen viele der weltweit größten Observatorien mit der Suche nach seinem Gegenstück im sichtbaren Licht. Und sie fanden es. Ein solches Gegenstück wurde unter anderem vom Weltraumobservatorium Fermi der NASA ermittelt, welches herausfand, dass der Gammastrahlenblazar TXS 0506+056 in der richtigen Richtung stand und die Gammastrahlen eines Blitzes fast exakt zeitgleich mit dem Neutrino eintrafen. Obwohl diese und weitere Übereinstimmungen von Position und Zeit statistisch stark sind, warten Astronomen weitere ähnliche Zusammenhänge zwischen Neutrinos und Blazar-Licht, um ganz sicher zu gehen.

Diese künstlerische Darstellung zeigt einen Teilchenstrahl, der von einem Schwarzen Loch im Zentrum eines Blazars ausströmt.

Zur Originalseite

Centaurus A

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: CEDIC-Team am Chilescope, BearbeitungBernhard Hubl

Beschreibung: Centaurus A ist nur 11 Millionen Lichtjahre entfernt und somit vom Planeten Erde aus gesehen die nächstgelegene aktive Galaxie. Diese scharfe Teleskopansicht zeigt die ungewöhnliche elliptische Galaxie, diese ist auch als NGC 5128 bekannt und umfasst mehr als 60.000 Lichtjahre.

Centaurus A ist offensichtlich das Ergebnis einer Kollision zweier normaler Galaxien, was zu einem fantastischen Durcheinander aus Sternhaufen und imposanten Staubbahnen führte. Nahe dem Galaxienzentrum werden ständig übrig gebliebene kosmische Trümmer von einem zentralen Schwarzen Loch mit Milliarden Sonnenmassen vernichtet. Wie in anderen aktiven Galaxien erzeugt dieser Prozess wahrscheinlich die Radio-, Röntgen- und Gammastrahlenenergie, die von Centaurus A abgestrahlt wird.

Zur Originalseite

Viele Singularitäten im Galaktischen Zentrum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC / Columbia Univ./ C. Hailey et al.

Beschreibung: Eine kürzlich durchgeführte informelle Studie ergab, dass Astronomen noch keinen guten Sammelbegriff für Gruppen Schwarzer Löcher haben. Doch sie brauchen einen.

Die roten Kreise auf diesem Bild des Röntgenobservatoriums Chandra kennzeichnen eine Gruppe mit einem Dutzend Schwarzer Löcher in Doppelsternsystemen. Sie besitzen etwa 5 bis 30 Sonnenmassen und schwärmen in einem Umkreis von ungefähr 3 Lichtjahre um das Zentrum unserer Galaxis mit einem sehr massereiche Schwarzen Loch, das als Sagittarius A* (Sgr A*) bezeichnet wird. Gelbe Kreise kennzeichnen Röntgenquellen, die wahrscheinlich weniger massereiche Neutronensterne oder weiße Zwergsterne in Doppelsternsystemen sind.

Einzelne Schwarze Löcher wären unsichtbar, doch in Doppelsternsystemen sammeln sie Materie von ihrem normalen Begleitstern und erzeugen Röntgenstrahlung. In der Entfernung des galaktischen Zentrums kann Chandra nur die helleren dieser Doppelsysteme mit Schwarzen Löchern als punktförmige Röntgenquellen erkennen – ein Hinweis, dass es dort Hunderte schwächerer Doppelsysteme mit Schwarzen Löchern geben müsste, die noch nicht entdeckt wurden.

Zur Originalseite

LIGO-Virgo GW170814 Himmelskarte

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: LIGOVirgo-Arbeitsgemeinschaft – Optische Himmelsdaten: A. Mellinger

Beschreibung: Drei auf dem Planeten Erde verteilte Gravitationswellendetektoren meldeten eine Gemeinschaftsentdeckung von Wellen in der Raumzeit – es ist die vierte gemeldete Entdeckung der Verschmelzung eines Binärsystems Schwarzer Löcher im fernen Universum. Das Ereignis wurde GW170814 benannt, nach seiner Entdeckung am 14. August 2017 durch die LIGO-Beobachtungsorte in Hanford (Washington) und Livingston (Louisiana) sowie das erst kürzlich in Betrieb genommene Virgo-Observatorium bei Pisa in Italien. Das Signal entstand in den letzten Augenblicken der Verschmelzung zweier Schwarzer Löcher mit 31 und 25 Sonnenmassen in einer Entfernung von etwa 1,8 Milliarden Lichtjahren. Der Zeitvergleich der Messungen der Gravitationswellen an allen drei Standorten erlaubte den Astronomen eine erheblich verbesserte Eingrenzung der Herkunft des Signals am Himmel.Die einzige Himmelsregion, die mit den Signalen aller drei Detektoren übereinstimmt, liegt über den Magellanschen Wolken im Sternbild Eridanus, sie ist auf dieser Ganzhimmelskarte mit gelber Umrisslinie markiert. Die Ganzhimmelsprojektion zeigt auch den Bogen unserer Milchstraße. Eine verbesserte Lagebestimmung der Herkunft der Gravitationswelle durch drei Detektoren erlaubte schnelle Nachfolgebeobachtungen mit anderen üblicheren Observatorien für elektromagnetische Strahlung, die nach Signalen suchen können, welche möglicherweise mit dem Ereignis zusammenhängen. Die Ergänzung durch den Virgo-Detektor ermöglichte weiters die Messung der Polarisation der Gravitationswelle – eine Möglichkeit, die zudem Vorhersagen von Einsteins allgemeiner Relativitätstheorie bestätigt.

Zur Originalseite

N6946-BH1: Der Fall eines fehlenden Sterns

Das Bild ist zweigeteilt. Links im älteren Bild ist ein heller Stern erkennbar, der im rechten, neueren Bildteil verschwunden ist. Die Stelle ist jeweils mit einem blauen Kreis markiert.

Bildcredit: NASA, ESA, Hubble, C. Kochanek (OSU)

Was passiert mit dem Riesenstern N6946-BH1? Vor ein paar Jahren war er da. Hubble fotografierte ihn. Nun ist dort nur noch ein blasses Leuchten. Noch seltsamer ist, dass es keine helle Supernova gab, obwohl der Stern einige Monate lang deutlich heller wurde.

N6946-BH1 enthält etwa 25 Sonnenmassen. Die führende Theorie besagt, dass die starke Gravitation bei seinem finalen stürmischen Kampf den Großteil des Sterns zusammenhielt. Danach versank ein Großteil des Sterns in einem hausgemachten Schwarzen Loch. Falls dem so ist, entstand wohl aus allem, was außerhalb des Schwarzen Lochs übrig blieb, eine Akkretionsscheibe. Sie strahlt vergleichsweise blasses Infrarotlicht ab und wirbelt herum, ehe sie hineinfällt.

Falls sich diese finale Entwicklung am Ende bei anderen Sternen bestätigt, wäre das ein direkter Hinweis, dass ein sehr massereicher Stern seine Existenz eher mit einem Wimmern als mit einem Knall beendet.

Zur Originalseite

Schwarze Löcher mit bekannter Masse

Das Diagramm zeigt Schwarze Löcher, bei denen Gravitationswellen gemessen wurden, als blaue Kreise. Die Massen werden über das Diagramm in Relation zueinander gebracht.

Illustrationscredit: LIGO, NSF, Aurore Simonnet (Sonoma State U.)

GW170104 können wir zum Diagramm Schwarzer Löcher mit bekannter Masse hinzufügen. Die Verschmelzung zweier kleinerer Schwarzer Löcher ist extrem energiereich. Sie passt zur dritten Entdeckung von Gravitationswellen mit dem Laser Interferometer Gravitational-wave Observatory (LIGO).

Das neu entdeckte Schwarze Loch hat etwa 49 Sonnenmassen. Es füllt die Lücke zwischen den Massen der beiden verschmolzenen Schwarzen Löcher, die zuvor mit LIGO entdeckt wurden. GW150914 hatte 62 Sonnenmassen und GW151216 ist 21-mal so schwer wie die Sonne. In allen drei Fällen wurde das Signal in jedem Zwillings-Detektor von LIGO eindeutig als Verschmelzung Schwarzer Löcher erkannt. Ein vierter Fall ist LVT151012. Er ergibt sich aus einem weniger sicheren Nachweis.

Die Entfernung zu GW170104 beträgt ungefähr 3 Milliarden Lichtjahre. Es ist somit weiter entfernt als die aktuell geschätzten Distanzen zu GW150914 und GW151216. Die Wellen in der Raumzeit wurden bei LIGOs aktueller Beobachtungsperiode entdeckt. Diese begann am 30. November 2016 und wird über den Sommer fortgesetzt.

Zur Originalseite

Das holografische Prinzip

Das Bild zeigt viele bunte Flecken. Wenn man das Bild schielend anstarrt, erkennt man nach einiger Zeit eine Teekanne, die plastisch hervortritt.

Bildcredit: Caltech

Sagt dieses Bild mehr als tausend Worte? Was das Holografische Prinzip betrifft, beträgt die größte Menge an Information, die dieses Bild enthalten kann, auf einem handelsüblichen Monitor eines Computers etwa 3 x 1065 Bit.

Das Holografische Prinzip ist bisher unbewiesen. Es besagt, dass die Menge an Information, die in einem Bereich auf jeder beliebigen Oberfläche enthalten sein kann, begrenzt ist. Somit hängt die Menge an Information im Inneren eines Raumes – anders, als man vermuten würde – nicht vom Volumen des Raumes ab, sondern von der Fläche der angrenzenden Wände.

Das Prinzip leitet sich von der Idee ab, dass die Seite einer Fläche, die nur etwa ein Bit Information enthält, eine Planck-Länge misst. Eine Planck-Länge ist die Größenordnung, ab der die klassische Gravitation ihre Bedeutung verliert und die Quantenmechanik übernimmt. Diese Grenze wurde erstmals 1993 von dem Physiker Gerard ‚t Hooft postuliert.

Man kann diese scheinbar abwegige Überlegung verallgemeinern. Dann ergibt sich, dass die Information in einem Schwarzen Loch nicht vom Volumen bestimmt wird, sondern von der Oberfläche des Ereignishorizonts.

Der Begriff „holografisch“ leitet sich von der Analogie zu einem Hologramm ab. Dabei entstehen dreidimensionale Bilder, indem man Licht auf eine flache Leinwand projiziert. Aufgepasst: Manche sehen in diesem Bild vielleicht nicht 3 x 1065 Bit, sondern eine Teekanne.

Zur Originalseite