Die bunten Wolken von Rho Ophiuchi

Die Sternwolken um Rho Ophiuchi im Schlangenträger zeigen eine Vielzahl an Prozessen in verschiedenen Farben.

Bildcredit und Bildrechte: Amir H. Abolfath

Beschreibung: Die vielen eindrucksvollen Farben der Rho-Ophiuchi-Wolke zeigen die vielen Prozesse, die darin stattfinden. Die blauen Regionen leuchten vorwiegend in reflektiertem Licht. Das blaue Licht des Sternsystems Rho Ophiuchi und naher Sterne wird von diesem Teil des Nebels besser reflektiert als rotes Licht. Aus dem gleichen Grund erscheint der Tageshimmel der Erde blau.

Die roten und gelben Regionen leuchten vorwiegend durch die Emissionen von atomarem und molekularem Gas im Nebel. Das Licht der nahen blauen Sterne – das energiereicher ist als der helle Stern Antares – stößt Elektronen aus dem Gas, das dann leuchtet, wenn die Elektronen mit dem Gas rekombinieren.

Die dunkelbraunen Regionen entstehen durch Staubkörnchen, die in jungen Sternatmosphären entstanden sind, und die von hinten abgestrahltes Licht effizient blockieren.

Die Rho-Ophiuchi-Sternwolken liegen weit vor dem Kugelsternhaufen M4, der hier rechts oben abgebildet ist. Sie sind farbenprächtiger, als Menschen sie sehen können – die Wolken strahlen Licht in jeder Wellenlänge von Radio bis Gammastrahlen ab.

Astrophysik: Stöbert in +2200 Codes der Astrophysics Source Code Library
Zur Originalseite

M2-9: Flügel eines Schmetterlingsnebels

M2-9 ist ein schmetterlingsförmiger planetarischer Nebel, der 2100 Lichtjahre entfernt ist.

Bildcredit: Hubble-Nachlassarchiv, NASA, ESABearbeitung: Judy Schmidt

Beschreibung: Schätzen wir die Kunst der Sterne mehr, wenn es mit ihnen zu Ende geht? Sterne präsentieren ihre kunstvollste Darbietung, während sie untergehen.

Sterne mit geringer Masse wie unsere Sonne oder der hier gezeigte M2-9 verwandeln sich von normalen Sternen in weiße Zwerge, indem sie ihre äußeren gasförmigen Hüllen abstoßen. Das ausgestoßene Gas bietet oft eine eindrucksvolle Schau, die als planetarischer Nebel bezeichnet wird, und die im Laufe von Tausenden Jahren allmählich verblasst.

M2-9, ein schmetterlingsförmiger planetarischer Nebel, der 2100 Lichtjahre entfernt ist, wurde in charakteristischen Farben abgebildet. Seine Flügel erzählen eine seltsame, unvollständige Geschichte. Im Zentrum kreisen zwei Sterne in einer gasförmigen Scheibe, die 10-mal so groß ist wie die Umlaufbahn von Pluto.

Die abgeworfene Hülle des sterbenden Sterns dringt aus der Scheibe und schafft das bipolare Erscheinungsbild. Vieles an den physikalischen Prozessen, die planetarische Nebel bilden und formen, ist noch unbekannt.

Fast Hyperraum: APOD-Zufallsgenerator
Zur Originalseite

Der Pfeifennebel

Die Dunkelwolken B59, B72, B77 und B78 wurden von dem Astronomen E. E. Barnard katalogisiert und bilden zusammen den Pfeifennebel.

Bildcredit und Bildrechte: Jose Mtanous

Beschreibung: Östlich von Antares breiten sich dunkle Markierungen in den dicht gedrängten Sternfeldern im Zentrum unserer Milchstraße aus. Die undurchsichtigen interstellaren Staubwolken wurden zu Beginn des 20. Jahrhunderts von dem Astronomen E. E. Barnard katalogisiert, zu ihnen gehören B59, B72, B77 und B78, die man vor einem sternhellen Hintergrund sieht.

Ihre kombinierten Formen erinnern an Pfeifenstiel und Pfeifenkopf, daher haben die Dunkelnebel den gängigen Namen Pfeifennebel. Die detailreiche, ausgedehnte Ansicht umfasst ein ganze 10 mal 10 Grad großes Sichtfeld im unaussprechlichen Sternbild Ophiuchus. Der Pfeifennebel ist Teil des Ophiuchus-Dunkelwolkenkomplexes, der ungefähr 450 Lichtjahre entfernt ist. Dichte Kerne aus Gas und Staub im Pfeifennebel kollabieren und bilden Sterne.

Zur Originalseite

Extremer Ausbruch eines Schwarzen Lochs

Ein Schwarzes Loch sprengt in einem Anfall von Übelkeit eine Höhlung ins intergalaktische Medium; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: Chandra: NASA/CXC/NRL/S. Giacintucci, et al., XMM-Newton: ESA/XMM-Newton; Radio: NCRA/TIFR/GMRT; Infrarot: 2MASS/UMass/IPAC-Caltech/NASA/NSF; Text: Michael F. Corcoran (NASA, Catholic U., HEAPOW)

Beschreibung: Astronomen glauben, dass sie nun das mächtigste Beispiel für einen Ausbruch eines Schwarzen Lochs gefunden haben, der je im Universum beobachtet wurde. Dieses Falschfarben-Kompositbild zeigt einen Galaxienhaufen im Sternbild Ophiuchus (Schlangenträger). Es enthält Röntgenbilder (vom Chandra-Röntgenobservatorium und XMM-Newton) in Violett sowie ein Radiobild (vom Giant Metrewave Radio Telescope in Indien) in Blau (dazu ein Infrarotbild der Galaxien und Sterne im Blickfeld in Weiß zur besseren Erkennbarkeit).

Die gestrichelte Linie markiert die Grenze eines leer gefegten Hohlraums, die von dem sehr massereichen Schwarzen Loch aufgeblasen wurde, das im Zentrum der Galaxie lauert und mit einem Kreuz markiert ist. Dieser Hohlraum ist mit Radioemissionen gefüllt. Man vermutet, dass es zu diesem riesigen Ausstoß kam, weil das Schwarze Loch zu viel gefressen hatte und einen vorübergehenden Anfall von „Schwarzloch-Übelkeit“ erlitt, der zum Ausstoß eines mächtigen Radiostrahls führte, der in den intergalaktischen Raum geschleudert wurde. Die Menge an Energie, die benötigt wird, um diese Höhlung zu leeren, entspricht ungefähr 10 Milliarden Supernovaexplosionen.

Zur Originalseite

Zeta Oph: Entlaufener Stern

Siehe Beschreibung. Der Ausreißerstern Zeta Ophiuchi treibt eine gewaltige Stoßwelle vor sich her; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer

Beschreibung: Wie ein Schiff, das durch kosmische Meere pflügt, erzeugt der Ausreißerstern Zeta Ophiuchi eine interstellare Bugwelle oder Kopfwelle, die auf diesem faszinierenden Infrarotporträt zu sehen ist.

Der bläuliche Zeta Oph ist ungefähr 20-mal massereicher als die Sonne. Auf dieser Falschfarbenansicht liegt er nahe der Bildmitte und wandert mit 24 Kilometern pro Sekunde nach links. Sein starker Sternwind weht ihm voraus, er komprimiert und erhitzt das staubige interstellare Material und formt die gekrümmte Stoßfront.

Was brachte diesen Stern in Bewegung? Zeta Oph gehörte wahrscheinlich einst zu einem Doppelsternsystem, sein Begleitstern war massereicher und daher kurzlebiger. Als der Begleiter als Supernova explodierte und dabei schlagartig Masse verlor, wurde Zeta Oph aus dem System geschleudert.

Zeta Oph ist ungefähr 460 Lichtjahre entfernt und leuchtet 65.000-mal heller als die Sonne. Er wäre einer der helleren Sterne am Himmel, wenn er nicht von undurchsichtigem Staub umgeben wäre. Das Bild umfasst etwa 1,5 Grad am Himmel, das entspricht in der geschätzten Entfernung von Zeta Ophiuchi 12 Lichtjahren.

Letzte Woche versetzte die NASA das Weltraumteleskop Spitzer in einen sicheren Modus und beendete damit seine 16 erfolgreichen Jahre dauernde Erforschung unseres Universums.

Aktuell: NASA beendet die Mission des Weltraumteleskops Spitzer
Zur Originalseite

Junge Sterne in der Rho-Ophiuchi-Wolke

Nebelige Wolken in braunen und dunkeltürkisen Farben füllen das Bild, in der Mitte leuchtet ein hellbeiger Nebel, rechts unten ein roter.

Bildcredit: NASA, JPL-Caltech, WISE

Beschreibung: Wie entstehen Sterne? Um das herauszufinden, schufen Astronomen mit dem Wide-field Infrared Survey Explorer (WISE) diese reizende Falschfarben-Komposition in Infrarotwellenlängen mit Staubwolken und eingebetteten, neu entstandenen Sternen. Die kosmische Leinwand zeigt eine der nächstliegenden Sternbildungsregionen, es sind Teile des Wolkenkomplexes um Rho Ophiuchi, der ungefähr 400 Lichtjahre entfernt am südlichen Rand des aussprechbaren Sternbildes Ophiuchus (Schlangenträger) liegt.

Junge Sterne, die in einer großen Wolke aus kaltem molekularem Wasserstoff entstanden sind, heizen den umgebenden Staub auf und sorgen für das infrarote Leuchten. Sterne im Entstehungsprozess, die als junge stellare Objekte oder YSOs bezeichnet werden, sind in die kompakten rosaroten Nebel eingebettet, die man hier sieht. Vor den neugierigen Augen optischer Teleskope sind sie jedoch verborgen.

Eine Untersuchung der Region in durchdringendem Infrarotlicht brachte entstehende und neu entstandene Sterne zum Vorschein, deren Durchschnittsalter auf etwa 300.000 Jahre geschätzt wird. Verglichen mit dem Alter der Sonne von 5 Milliarden Jahren ist das extrem jung. Der auffällige rötliche Nebel rechts unten, der den Stern Sigma Scorpii umgibt, ist ein Reflexionsnebel aus Staub, der Sternenlicht streut.

Diese Ansicht von WISE wurde 2012 veröffentlicht. Sie umfasst an die 2 Grad und bedeckt in der geschätzten Entfernung der Rho-Ophiuchi-Wolke ungefähr 14 Lichtjahre.

Zur Originalseite

Der Tag nach Mars

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Rolando Ligustri (CARA-Projekt, CAST)

Beschreibung: Der 31. Oktober 1938 war der Tag, nachdem Marsbewohner den Planeten Erde erreicht hatten, und alles war ruhig. Es stellte sich heraus, dass die Berichte von der Invasion Teil einer Halloween-Radiosendung waren – dem inzwischen berühmten Hörspiel, das auf dem Science-Fiction-Roman „Der Krieg der Welten“ von H.G. Wells basiert.

Auch auf dem Mars war der 20. Oktober 2014 ruhig. Es war der Tag nach seiner nahen Begegnung mit dem Kometen Siding Spring (C/2013 A1). Das war keine Falschmeldung – dieser Komet kam tatsächlich etwa 140.000 Kilometer an den Mars heran, das entspricht etwa einem Drittel der Erde-Mond-Distanz. Die Rover und Raumsonden der Erde in der Marsumlaufbahn und auf der Oberfläche berichteten von keinen schädlichen Auswirkungen, doch sie hatten einen Logenplatz, als der Besucher aus dem äußeren Sonnensystem vorüberzog.

Dieser farbenprächtige Teleskop-Schnappschuss ist breiter als 2 Grad und zeigt die Sterne im Sternbild Schlangenträger (Ophiuchus) sowie unsere Sicht auf den Mars am Tag danach. Der bläuliche Stern 51 Ophiuchi steht rechts oben, und der Komet taucht gerade aus dem hellen Glanz des Roten Planeten auf.

Zur Originalseite

BHB2007: Ein junger Doppelstern entsteht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: ALMA (ESO/NAOJ/NRAO), F. O. Alves et al.

Beschreibung: Wie entstehen Doppelsterne? Um das herauszufinden, fotografierte das Atacama Large Millimeter Array (ALMA) der ESO kürzlich eines der höchstaufgelösten Bilder, die je von einem Doppelsternsystem im Entstehungsstadium aufgenommen wurden.

Die meisten Sterne sind nicht alleine – sie entstehen typischerweise als Teil von Mehrfachsternsystemen, in denen jeder Stern um einen gemeinsamen Schwerpunkt kreist. Die beiden hellen Flecken auf diesem Bild sind kleine Scheiben, welche die entstehenden Protosterne in [BHB2007] 11 umgeben. Die brezelförmigen Ranken, die sie umgeben, bestehen aus Gas und Staub. Sie wurden durch Gravitation aus einer größeren Scheibe herausgezogen. Die zirkumstellaren Ranken, welche die Sterne umgeben, reichen ungefähr bis zum Radius der Neptunbahn.

Das BHB2007-System ist ein kleiner Teil des Pfeifennebels (auch bekannt als Barnard 59). Dieser ist ein fotogenes Netzwerk aus Staub und Gas, das im Sternbild Schlangenträger aus der Spiralscheibe der Milchstraße hervortritt. Der Entstehungsprozess des Doppelsterns sollte in wenigen Millionen Jahren abgeschlossen sein.

Zur Originalseite