Die dunkle Molekülwolke Barnard 68

Mitten in einem sterngesprenkelten Bildfeld ist ein dunkler Fleck, eine Dunkelwolke, die die Sterne verdeckt.

Bildcredit: FORS-Team, 8,2-Meter VLT Antu, ESO

Beschreibung: Wohin sind all die Sterne verschwunden? Was für ein Loch im Himmel gehalten wurde, ist Astronomen nun als dunkle Molekülwolke bekannt. Hier absorbiert eine hohe Konzentration aus Staub und molekularem Gas praktisch alles sichtbare Licht, das von Hintergrundsternen abgestrahlt wird. Die schaurig dunkle Umgebung macht das Innere von Molekülwolken zu einigen der kältesten und isoliertesten Orte im Universum. Einer der interessantesten dunklen Absorptionsnebel ist eine Wolke im Sternbild Ophiuchus, er ist als Barnard 68 bekannt und hier abgebildet. Da im Zentrum keine Sterne sichtbar sind, ist Barnard 68 vermutlich relativ nahe. Messungen zufolge ist sie etwa 500 Lichtjahre entfernt und ein halbes Lichtjahr groß. Wir wissen nicht genau, wie Molekülwolken wie Barnard 68 entstehen, doch diese Wolken Orte, an denen wahrscheinlich neue Sterne entstehen. Man stellte fest, dass Barnard 68 wahrscheinlich kollabiert und ein neues Sternsystem bildet. Es ist möglich, im Infrarotlicht durch die Wolke hindurchzublicken.

Zur Originalseite

Milchstraße über den Spanischen Gipfeln

Zwischen zwei verschneiten Gipfeln steigt in der Ferne die Milchstraße nach links auf. Mitten in der Milchstraße verlaufen sehr markante Staubbahnen. Rechs daneben in der Bildmitte leuchtet die bunte Region um Rho Ophiuchi.

Bildcredit und Bildrechte: Martin Pugh Überlagerte Beschriftung: Judy Schmidt

Beschreibung: Das ist kein Gewitter, der Blitz schlug nicht zwischen diesen Bergen ein. Der diagonale Streifen ist das Zentralband unserer Milchstraße, und die Zwillingsgipfel werden als Spanische Gipfel bezeichnet, liegen aber in Colorado in den USA. Obwohl die spanischen Gipfel aus leicht unterschiedlichen Gesteinsarten bestehen, sind beide etwa 25 Millionen Jahre alt. Diese heitere, fast geistvolle Bildkomposition wurde sorgfältig durch Kombination einer Serie an Bildern erstellt, die alle zu Beginn des letzten Monats in derselben Nacht am gleichen Ort fotografiert wurden. In der ersten Aufnahmeserie wurde der Himmelshintergrund aufgebaut, sodass die Staubbahnen und die große, farbenprächtige Region um den Stern Rho Ophiuchi in der Milchstraße rechts neben der Mitte detailreich hervortreten. Ein Himmelsbild wurde mit einem Nebelfilter fotografiert, sodass hellere Sterne größer und markanter erscheinen. Als Zugabe sind die Planeten Mars und Saturn über den Gipfeln platziert und bilden mit dem hellen Stern Antares ein orangefarbenes Dreieck. Später in dieser Nacht warf der Mond, nachdem er aufgegangen war, ein natürliches Licht auf die schneebedeckten Berggipfel.

Zur Originalseite

Farbenprächtige Wolken bei Rho Ophiuchi

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Markus Noller (Deep-Sky-Images)

Beschreibung: Warum ist der Himmel um Antares und Rho Ophiuchi so bunt? Die Farben stammen von einer Mischung aus Objekten und Prozessen. Feiner Staub, den das Sternenlicht von vorne beleuchtet, bildet blaue Reflexionsnebel. Gasförmige Wolken, deren Atome von ultraviolettem Sternenlicht angeregt werden, erzeugen rötliche Emissionsnebel. Von hinten beleuchtete Staubwolken blockieren Sternenlicht und erscheinen dunkel. Antares, ein roter Überriese und einer der helleren Sterne am Nachthimmel, beleuchtet die gelblich-roten Wolken unter der Mitte dieses Bildes. Rho Ophiuchi liegt in der Mitte des linken blauen Nebels. Der ferne Kugelsternhaufen M4 steht rechts über der Mitte. Diese Sternwolken sind sogar noch bunter, als Menschen sie sehen können, da sie Licht im gesamten elektromagnetischen Spektrum abstrahlen.

Zur Originalseite

NGC 6240: verschmelzende Galaxien

Mitten im Bild leuchtet eine Galaxie, deren Aussehen an eine Explosion erinnert. Im Inneren sind rote und dunkle Wolken über einem hellgelben Zentrum. Im Hintergrund leuchten nur wenige Sterne.

Bildcredit: NASA, ESA, Hubble-Vermächtnis (STScI / AURA), A. Evans (U. Virginia / NRAO / Stony Brook U.)

Beschreibung: NGC 6240 bietet einen seltenen, flüchtigen Blick auf eine nahe kosmische Katastrophe, die in den letzten Zügen liegt. Die gigantische Kollision zweier Galaxien findet ungefähr 400 Millionen Lichtjahre entfernt im Sternbild Schlangenträger (Ophiuchus) statt.

Die verschmelzenden Galaxien speien verzerrte Gezeitenschweife aus Sternen, Gas und Staub aus, im Inneren finden schnelle, heftige Sternbildungsausbrüche statt. Die beiden massereichen Schwarzen Löcher in den ursprünglichen galaktischen Kernen verschmelzen zu einem einzigen, noch massereicheren Schwarzen Loch. Bald bleibt eine einzige große Galaxie übrig.

Dieses dramatische Bild der Szenerie ist ein Komposit aus Schmalbanddaten und Breitbanddaten vom nahen Infrarot bis ins sichtbare Licht der Hubble-Kameras ACS und WPC3. Die Ansicht ist in der geschätzten Entfernung von NGC 6240 breiter als 300.000 Lichtjahre.

Zur Originalseite

Molekülwolke Barnard 68

Mitten in einem sterngefüllten Bildfeld ist ein dunkler Fleck, es ist eine Molekülwolke, die die Sterne dahinter versteckt.

Bildcredit: FORS Team, 8,2-Meter-VLT Antu, ESO

Beschreibung: Wo sind die Sterne verschwunden? Was früher für ein Loch im Himmel gehalten wurde, ist Astronomen nun als dunkle Molekülwolke bekannt. Eine hohe Konzentration aus Staub und molekularem Gas absorbiert praktisch alles sichtbare Licht der Sterne im Hintergrund. Wegen der gespenstisch dunklen Umgebung gehört das Innere von Molekülwolken zu den kältesten und isoliertesten Orten im Universum. Zu den interessantesten dunklen Absorptionsnebeln zählt eine Wolke im Sternbild Schlangenträger (Ophiuchus), die oben abgebildete Barnard 68. Dass man in der Mitte keine Sterne sieht, lässt den Schluss zu, dass Barnard 68 relativ nahe liegt. Laut Messungen ist er etwa 500 Lichtjahre entfernt und hat einen Durchmesser von einem halben Lichtjahr. Wie Molekülwolken wie Barnard 68 entstehen, ist nicht genau bekannt, doch wir wissen, dass diese Wolken selbst wahrscheinliche Orte für die Entstehung neuer Sterne sind. Man fand sogar heraus, dass Barnard 68 wahrscheinlich kollabiert und ein neues Sternsystem bildet. In Infrarot kann man sogar durch die Wolke hindurchblicken.

Zur Originalseite

IC 4603: Reflexionsnebel im Schlangenträger

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Rolf Olsen

Beschreibung: Warum ähnelt diese Sternenfeldfotografie einem impressionistischen Gemälde? Der Effekt entsteht nicht durch digitale Tricks, sondern durch große Mengen interstellaren Staubs. Staub besteht aus winzigen, kohlenstoffreichen Klümpchen, die ähnlich groß sind wie Zigarettenrauch, und stammt häufig aus den äußeren Atmosphäreschichten großer, junger Sterne. Der Staub wird verteilt, wenn der Stern stirbt, und wächst, wenn in der interstellaren Materie Dinge daran kleben bleiben. Dichte Staubwolken sind für sichtbares Licht undurchsichtig und können Hintergrundsterne vollständig verbergen. Bei weniger dichten Wolken wird die Fähigkeit des Staubs, bevorzugt blaues Sternenlicht zu reflektieren, wichtig, weil dadurch das blaue Licht der Sterne quasi aufblüht und den umgebenden Staub markiert. Nebelartige Gasemissionen, die meist in rotem Licht am hellsten leuchten, können zusammen mit diesen Regionen bilden, die scheinbar auf der Leinwand eines Künstlers entstanden sind. Oben ist der Zentralteil des Nebels IC 4603 fotografiert, der den hellen Stern SAO 184376 (8. Größenklasse) umgibt, welcher hauptsächlich den blauen Reflexionsnebel beleuchtet. IC 4603 steht in der Nähe des sehr hellen Sterns Antares (1. Größenklasse) im Sternbild Skorpion.

Zur Originalseite

Farbenprächtige Wolken bei Rho Ophiuchi

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Tom O’Donoghue

Beschreibung: Warum ist der Himmel bei Antares und Rho Ophiuchi so farbenprächtig? Die Farben ergeben sich aus einer Mischung von Objekten und Prozessen. Feiner Staub, der von vorne mit Sternenlicht beleuchtet wird, erzeugt blaue Reflexionsnebel. Gasförmige Wolken, deren Atome von ultraviolettem Sternenlicht angeregt werden, erzeugen rötliche Emissionsnebel. Von hinten beleuchtete Staubwolken blockieren das Sternenlicht und erscheinen daher dunkel. Antares, ein roter Überriese und einer der hellsten Sterne am Nachthimmel, beleuchtet die gelb-rötlichen Wolken unter der Mitte. Rho Ophiuchi liegt oben in der Mitte des blauen Nebels. Der ferne Kugelsternhaufen M4 ist rechts neben Antares zu sehen, und rechts darüber befindet sich die rote Wolke, die Sigma Scorpii einhüllt. Diese Sternwolken sind sogar noch farbenprächtiger, als Menschen wahrnehmen können – sie emittieren Licht im gesamten elektromagnetischen Spektrum.

Zur Originalseite

Molekülwolke Barnard 68

Im Bild verdeckt eine dunkle Wolke die zahllosen Sterne im Hintergrund.

Bildcredit: FORS-Team, 8,2-Meter VLT Antu, ESO

Beschreibung: Wohin sind die Sterne verschwunden? Was früher für ein Loch am Himmel gehalten wurde, ist nun unter Astronomen als dunkle Molekülwolke bekannt. Hier absorbiert eine hohe Konzentration an Staub und molekularem Gas praktisch alles an sichtbarem Licht, was von den Hintergrundsternen abgestrahlt wird. Die unheimliche, dunkle Umgebung macht das Innere von Molekülwolken zu einigen der kältesten und isoliertesten Orte im Universum. Einer der namhaftesten dieser dunklen Absorptionsnebel ist eine Wolke im Sternbild Schlangenträger (Ophiuchus), bekannt als Barnard 68, der oben abgebildet ist. Dass in der Mitte keine Sterne zu sehen sind, lässt vermuten, dass Barnard 68 relativ nahe liegt; Messungen zufolge ist er etwa 500 Lichtjahre entfernt und hat somit einen Durchmesser von einem halben Lichtjahr. Es ist nicht genau bekannt, wie Molekülwolken wie Barnard 68 entstehen, doch es ist bekannt, dass diese Wolken selbst wahrscheinlich Orte sind, wo neue Sterne entstehen. Tatsächlich wurde herausgefunden, dass wahrscheinlich auch Barnard 68 kollabiert und ein neues Sternsystem bildet. Im Infrarotlicht ist es möglich, durch die Wolke hindurchzusehen.

Zur Originalseite