Jupiters Magnetfeld von Juno


Videocredit: NASA, JPL-Caltech, Harvard U., K. Moore et al.

Beschreibung: Wie stark ähnelt Jupiters Magnetfeld dem der Erde? Die Roboter-Raumsonde Juno der NASA fand heraus, dass Jupiters Magnetfeld überraschend komplex ist und Jupiter keine eindeutigen Magnetpole hat wie unsere Erde.

Dieses Video zeigt eine Momentaufnahme von Jupiters Magnetfeld, es wurde aus Daten von Juno animiert. Rote und blaue Farben bilden Regionen von Wolkenoberflächen mit stark positiven (südlichen) beziehungsweise negativen (nördlichen) Magnetfeldern ab. Um den Planeten verlaufen gedachte Linien mit konstanter Magnetfeldstärke.

Der erste Abschnitt des animierten Videos zeigt zunächst ein scheinbar relativ normales Dipolfeld, doch bald rotiert eine magnetische Region ins Sichtfeld, die nun als großer blauer Fleck bekannt ist, und die nicht direkt an Jupiters Rotationspolen ausgerichtet ist.

Im zweiten Abschnitt führt uns die anschauliche Animation über einen von Jupiters Rotationspolen, und es zeigt sich, dass die roten magnetischen Zentren ausgedehnt sind und stellenweise sogar ringförmig verlaufen. Ein besseres Verständnis von Jupiters Magnetfeld kann auch genauere Erklärungen für den rätselhaften planetenweiten Magnetismus der Erde liefern.

Zur Originalseite

Start des Solar Orbiter

Start des Solar Orbiter auf einer Atlas V Trägerrakete.

Bildcredit und Bildrechte: Derek Demeter (Emil-Buehler-Planetarium)

Wie beeinflusst das Wetter auf der Sonne die Erde? Um das herauszufinden, starteten die Europäische Weltraumagentur ESA und die NASA den Solar Orbiter. Diese Roboter-Raumsonde kreist um die Sonne. Sie beobachtet Veränderungen von Licht, Sonnenwind und Magnetfeld der Sonne nicht nur aus der Perspektive der Erde, sondern auch über und unter der Sonne.

Der Solar Orbiter zeigt auf dieser Langzeitbelichtung vom Start einen Lichtbogen, gezogen von den hellen Triebwerken einer Atlas-V-Rakete der United Launch Alliance. Sie brachte den Satelliten von der Erde ins All. In den nächsten Jahren nützt der Solar Orbiter die Schwerkraft von Erde und Venus, um die Ebene der Planeten zu verlassen. Er kommt dann näher an die Sonne heran als Merkur.

Heftiges Wetter auf der Sonne stammt von Sonneneruptionen und koronalen Massenauswürfen. Es kann Stromnetze auf der Erde und Kommunikationssatelliten im Erdorbit empfindlich stören. Die Beobachtungen des Solar Orbiters werden mit denen der Parker Solar Probe koordiniert. Parker Solar Probe startete 2018 und umkreist ebenfalls die Sonne.

Solar Orbiter: Video des Starts

Zur Originalseite

Komet CG verdampft

Siehe Beschreibung. Strahlen auf dem Kometen Tschurjumow-Gerassimenko, fotografiert von der ESA-Raumsonde Rosetta; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: ESA, Rosetta, NAVCAM

Beschreibung: Wo entstehen Kometenschweife? Es gibt keine offensichtlichen Orte auf einem Kometenkern, an denen die Strahlen ausströmen, die dann den Kometenschweif bilden.

Dieses Bild ist eines der besten, auf dem ausströmende Strahlen zu sehen sind. Es wurde 2015 von der Roboter-Raumsonde Rosetta der ESA fotografiert, die von 2014 bis 2016 den Kometen 67P/Tschurjumow-Gerassimenko (Komet CG) umkreiste. Das Bild zeigt Schwaden aus Gas und Staub, die an zahlreichen Orten vom Kern des Kometen CG austraten, als er der Sonne näher kam und sich erwärmte.

Der Komet hat zwei markante Ausbuchtungen, die größere ist ungefähr 4 Kilometer breit und ist mit der kleineren Keule, die einen Durchmesser 2,5 Kilometern hat, über eine schmale Halsregion verbunden. Untersuchungen lassen vermuten, dass die Verdampfung weit unter der Kometenoberfläche stattfindet, und dass dabei die Strahlen aus Staub und Eis entstehen, deren Ausbruch durch die Oberfläche zu beobachten sind.

Komet CG (der auch als Komet 67P bekannt ist) verliert bei jedem seiner 6,44 Jahre dauernden Umläufe um die Sonne über solche Strahlen etwa einen Meter seines Radius. Bei dieser Menge wird der Komet in wenigen Tausend Jahren vollständig zerstört sein. 2016 endete Rosettas Mission mit einem kontrollierten Einschlag auf der Oberfläche des Kometen 67P.

Astronomie-Öffentlichkeitsarbeit: Autoren für APOD gesucht
Zur Originalseite

Stürmische Wolken auf Jupiter

Siehe Beschreibung. Die Raumsonde Juno fotografiert Jupiters Wolkenoberflächen. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: NASA/JPL-Caltech/SwRI/MSSS; Bearbeitung: Kevin M. Gill

Beschreibung: Einige Wolkenmuster auf Jupiter sind recht komplex. Im Mai fotografierte die robotischen Raumsonde Juno der NASA, die derzeit den größten Planeten des Sonnensystems umrundet, diese stürmischen Wolken.

Dieses Bild nahm Juno nur ungefähr 15.000 Kilometer über Jupiters Wolkenoberflächen auf. Die Sonde war so nahe, dass weniger als die Hälfte des Riesenplaneten sichtbar ist. Die unebenen weißen Wolken rechts sind plötzlich aufsteigende hoch gelegene Wolken – wie werden als Pop-up-Wolken bezeichnet.

Die Mission Juno wurde nun bis 2021 erweitert und untersucht Jupiter auf neue Art und Weise. Unter vielen anderen Dingen vermaß Juno Jupiters Gravitationsfeld und fand überraschende Hinweise, dass er vielleicht großteils flüssig ist.

Zur Originalseite

Kontaktpunkte für OSIRIS-REx auf dem Asteroiden Bennu


Videocredit: NASA, GSFC, U. Arizona, SVS, OSIRIS-REx

Beschreibung: Wo ist der beste Ort, um eine Oberflächenprobe vom Asteroiden Bennu zu nehmen? Die NASA startete 2016 den robotischen Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx), um den  500 Meter großen Asteroiden 101955 Bennu zu erforschen.

Nachdem OSIRIS-REx die dunkle Oberfläche des erdnahen Asteroiden kartiert wurde, soll er als Nächstes im August 2020 eine Oberflächenprobe von Bennu entnehmen. Dieses 23-Sekunden-Zeitraffervideo zeigt vier mögliche Berührungspunkte, von denen die NASA zu Beginn des Monats einen auswählte.

Als Primär-Aufsetzpunkt wählte die NASA Nightingale nahe Bennus Nordhalbkugel, weil er relativ flach ist, kaum Felsen aufweist und offensichtlich reich an feinkörnigem Sand ist. Die zweite Wahl ist Osprey. Wenn alles nach den Plänen der NASA verläuft, werden die Bodenproben von Bennu 2023 für genaue Untersuchungen zur Erde gebracht.

Freier Vortrag: APOD-Herausgeber zeigt am 3. Januar in NYC die besten Astronomiebilder von 2019
Zur Originalseite

Apollo 12 und Surveyor 3 in Stereo

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, Apollo 12, Alan Bean – Stereo-Bildrechte: Kevin Frank

Beschreibung: Setzen Sie Ihre rot-blauen Brillen auf und betrachten Sie diese Stereoansicht von der Oberfläche des Mondes. Die 3D-Szene zeigt den Apollo-12-Astronauten Pete Conrad, wie er vor 50 Jahren im Novembr 1969 die Raumsonde Surveyor 3 besuchte. Am Horizont steht die Apollo-12-Mondlandefähre Intrepid.

Das Stereobild wurde sorgfältig aus zwei Einzelbildern (AS12-48-7133, AS12-48-7134) erstellt, die auf der Mondoberfläche aufgenommen wurden. Sie zeigen die Szene aus zwei leicht unterschiedlichen Blickrichtungen, die ungefähr dem Abstand menschlicher Augen entsprechen.

Zur Originalseite

Daphnis und die Ringe Saturns

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, Space Science Institute, Cassini

Beschreibung: Was passiert hier mit den Ringen Saturns? Ein kleiner Mond schlägt große Wellen. Der Mond ist der 8 Kilometer große Daphnis, und er schlägt allein mit seiner Schwerkraft Wellen in der Keeler-Lücke in den Saturnringen, er schwingt auf und ab, hinein und hinaus.

Dieses Bild ist eine farbige, detailreichere Version eines bereits veröffentlichten Bildes, das 2017 mit der Roboter-Raumsonde Cassini bei einem ihrer Umläufe im Zuge des großen Finales aufgenommen wurde. Daphnis ist rechts neben den Wellen zu sehen, die wahrscheinlich aus angehäuften Ringteilchen bestehen.

Daphnis wurde 2005 auf Cassini-Bildern entdeckt. Zur Tag- und Nachtgleiche auf Saturn im Jahr 2009, als die Ringebene direkt auf die Sonne zeigte, verursachte er so hohe Anhäufungen an Ringteilchen, dass sie beachtliche Schatten warfen.

Zur Originalseite

Der Tag nach Mars

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Rolando Ligustri (CARA-Projekt, CAST)

Beschreibung: Der 31. Oktober 1938 war der Tag, nachdem Marsbewohner den Planeten Erde erreicht hatten, und alles war ruhig. Es stellte sich heraus, dass die Berichte von der Invasion Teil einer Halloween-Radiosendung waren – dem inzwischen berühmten Hörspiel, das auf dem Science-Fiction-Roman „Der Krieg der Welten“ von H.G. Wells basiert.

Auch auf dem Mars war der 20. Oktober 2014 ruhig. Es war der Tag nach seiner nahen Begegnung mit dem Kometen Siding Spring (C/2013 A1). Das war keine Falschmeldung – dieser Komet kam tatsächlich etwa 140.000 Kilometer an den Mars heran, das entspricht etwa einem Drittel der Erde-Mond-Distanz. Die Rover und Raumsonden der Erde in der Marsumlaufbahn und auf der Oberfläche berichteten von keinen schädlichen Auswirkungen, doch sie hatten einen Logenplatz, als der Besucher aus dem äußeren Sonnensystem vorüberzog.

Dieser farbenprächtige Teleskop-Schnappschuss ist breiter als 2 Grad und zeigt die Sterne im Sternbild Schlangenträger (Ophiuchus) sowie unsere Sicht auf den Mars am Tag danach. Der bläuliche Stern 51 Ophiuchi steht rechts oben, und der Komet taucht gerade aus dem hellen Glanz des Roten Planeten auf.

Zur Originalseite