Der Seelennebel in Infrarot von Herschel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: ESA, Weltraumteleskop Herschel, NASA, JPL-Caltech

Beschreibung: Sterne entstehen in der Seele der Königin von Aethiopia. Genauer gesagt liegt eine große Sternbildungsregion, die Seelennebel genannt wird, in Richtung des Sternbildes Kassiopeia, die in der griechischen Mythologie die eitle Gattin eines Königs ist, der vor langer Zeit Ländereien am oberen Nil regierte. Der Seelennebel enthält mehrere offene Sternhaufen, eine große Radioquelle, die als W5 bekannt ist, sowie riesige ausgehöhlte Blasen, die von den Winden junger, massereicher Sterne geformt wurden. Der Seelennebel ist etwa 6500 Lichtjahre entfernt und ungefähr 100 Lichtjahre groß. Meist wird er zusammen mit seinem himmlischen Nachbarn, dem Herznebel (IC 1805), abgebildet. Dieses eindrucksvoll detailreiche Bild wurde letzten Monat vom Weltraumteleskop Herschel in mehreren Infrarot-Spektralbereichen fotografiert.

Zur Originalseite

Der Herznebel in Wasserstoff, Sauerstoff und Schwefel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Peter Jenkins

Beschreibung: Was liefert dem Herznebel seine Energie? Der große Emissionsnebel ist als IC 1805 katalogisiert und sieht als Ganzes wie ein Herz aus. Die Energie für das Leuchten des Nebels stammt von Sternenwinden und der Strahlung massereicher heißer Sterne im jungen Sternhaufen Melotte 15 – dieser sorgt auch für die Form der Gas- und Staubwolken. Dieses detailreiche Teleskopbild kartiert das überall vorhandene Leuchten der schmalen Emissionslinien von Wasserstoff-, Sauerstoff– und Schwefelatomen im Nebel. Das Sichtfeld umfasst am Himmel etwas mehr als zwei Grad und erscheint somit größer als vier Vollmonddurchmesser. Das kosmische Herz befindet sich im Sternbild Kassiopeia, der stolzen mythischen Königin von Aithiopia.

Zur Originalseite

Annäherung an den Blasennebel

Visualisationscredit: NASA, ESA und F. Summers, G. Bacon, Z. Levay und L. Frattare (Viz 3D Team, STScI); Danksagung: T. Rector/University of Alaska Anchorage, H. Schweiker/WIYN und NOAO/AURA/NSF, NASA, ESA und das Hubble Heritage Team (STScI/AURA)

Was sieht man, wenn man sich dem Blasennebel nähert? Diese Blase wurde vom Wind und der Strahlung eines massereichen Sterns geblasen. Sie ist nun sieben Lichtjahre groß. Der heiße Stern darin ist Tausende Male leuchtstärker als unsere Sonne. Er wurde inzwischen aus der Mitte des Nebels verschoben.

Zu Beginn der Visualisierung nähert sich der Blick dem Blasennebel (NGC 7635). Später wandert er um den Nebel herum und nähert sich weiter. Die Bilder, aus denen die Visualisierung in Zeitraffer berechnet wurde, stammen vom Weltraumteleskop Hubble im Orbit und vom WIYN-Teleskop auf dem Kitt Peak im US-Bundesstaat Arizona. Die Visualisierung basiert auf einem 3-D-Computermodell. Sie enthält künstlerische Interpretationen. Die Entfernungen sind stark verkürzt.

Zur Originalseite

Ein Neutronenstern kühlt ab

Der Supernovaüberrest Cas A ist von einer Wolke umgeben, die sich ausdehnt. Rechts unten ist eine Illustration des Neutronensterns, so könnte er aussehen.

Bildcredit: Röntgen: NASA/CXC/UNAM/Ioffe/D.Page, P. Shternin et al; Optisch: NASA/STScI; Illustration: NASA/CXC/M. Weiss

Die helle Quelle in der Mitte ist ein Neutronenstern. Das ist der unglaublich dichte, kollabierte Rest eines Sternkerns mit viel Masse. Der Supernovaüberrest Cassiopeia A (Cas A) umgibt ihn. Er ist angenehme 11.000 Lichtjahre entfernt.

Cas A ist die finale Explosion eines massereichen Sterns. Das Licht der Supernova erreichte die Erde erstmals vor etwa 350 Jahren. Die Trümmerwolke dehnt sich aus, sie ist etwa 15 Lichtjahre groß. Das Bildkomposit entstand Röntgendaten und optischen Aufnahmen.

Der Neutronenstern in Cas A kühlt ab. Er ist aber noch so heiß, dass er Röntgenlicht abstrahlt. Jahrelange Beobachtungen mit dem Röntgenteleskop Chandra im Erdorbit zeigen, dass der Neutronenstern rasch abkühlt. Das geschieht so schnell, dass man vermutet, dass ein großer Teil vom Kern des Neutronensterns eine reibungsfreie Supraflüssigkeit aus Neutronen bildet. Chandras Beobachtungen sind die ersten Hinweise auf diesen seltsamen Zustand der Neutronenmaterie.

Zur Originalseite

Melotte 15 im Herz

Dunkle Staubwolken liegen vor blau leuchtenden Emissionsnebeln. Dazwischen sind massereiche junge Sterne verteilt.

Bildcredit und Bildrechte: Steve Cooper

Mitten im Emissionsnebel IC 1805 bilden kosmische Wolken fantastische Formen. Im Nebel entstand ein neuer Sternhaufen, nämlich Melotte 15. Seine Sterne sind etwa 1,5 Millionen Jahre jung. Deren Sternwinde und die Strahlung der heißen, massereichen Sterne formen die Wolken in der farbigen Himmelslandschaft. Vor dem leuchtenden atomarem Gas breiten sich die Silhouetten dunkler Staubwolken aus.

Das Kompositbild ist ungefähr 15 Lichtjahre breit. Es entstand aus Teleskopaufnahmen, die mit Schmalband- und Breitbandfiltern gewonnen wurden. Die Emissionen ionisierter Atome von Wasserstoff, Schwefel und Sauerstoff sind in grünen, roten und blauen Farbtönen kartiert. Das entspricht der bekannten Hubble-Palette.

Weitwinkelbilder zeigen den Umriss von IC 1805, der zu seinem gängigen Namen Herznebel führte. IC 1805 ist ungefähr 7500 Lichtjahre entfernt. Er leuchtet im stolzen Sternbild Kassiopeia.

Zur Originalseite

W5 – die Seele der Sternbildung

Das Gewirr aus leuchtenden und dunklen Staubwolken ist von Sternen durchzogen. In den dunklen Wolken können Sterne entstehen. Die Nebel liegen im Zentrum von W5, dem Seelennebel.

Bildcredit: José Jiménez Priego

Wo entstehen Sterne? Häufig in energiereichen Regionen, wo Gas und dunkler Staub in einer chaotischen Umgebung herumgestoßen werden. Hier seht ihr die hellen, massereichen Sterne beim Zentrum von W5, dem Seelennebel. Sie explodieren, verströmen energiereiche Winde und strahlen Licht ab, das durch Ionisation entsteht.

Licht und Gas strömen nach außen. Dabei verdrängen und verdampfen sie viel von dem Gas und Staub in der Umgebung. Doch hinter dichten, schützenden Knoten bleiben Säulen aus Gas zurück. Auch in den Knoten entstehen Sterne. Das Bild zeigt das Innerste von W5. Es ist ein ungefähr 1000 Lichtjahre großer Bereich voller Säulen, die Sterne bilden.

Der Seelennebel ist auch als IC 1848 katalogisiert. Er ist ungefähr 6500 Lichtjahre entfernt und liegt im Sternbild Kassiopeia, der Königin von Aithiopia. Wahrscheinlich bleibt in ein paar hundert Millionen Jahren nur ein Haufen neu entstandener Sterne übrig. Diese Sterne treiben auseinander.

Zur Originalseite

NGC 7635: Blase in einem kosmischen Meer

Mitten im Bild leuchtet eine winzige blaue Blase, die von grüngelb leuchtenden Wolken umgeben ist. Links oben ist ein näher gelegener Sternhaufen.

Bildcredit und Bildrechte: Sébastien Gozé

Seht ihr die Blase in der Mitte? Die zarte schwebende Erscheinung auf dieser Weitwinkelansicht treibt in einem kosmischen Meer aus Sternen und leuchtendem Gas. Sie heißt schlicht Blasennebel und ist als NGC 7635 katalogisiert.

Der winzige Blasennebel etwa 10 Lichtjahre groß. Er und der größere Komplex aus interstellaren Gas- und Staubwolken sind ungefähr 11.000 Lichtjahre entfernt. Die Wolken reichen über die Grenze zwischen den Sternbildern Kepheus und Kassiopeia. Die prachtvolle Ansicht zeigt auch den offenen Sternhaufen M52 (links oben). Seine Entfernung beträgt etwa 5000 Lichtjahre.

Das Bild ist am Himmel etwa zwei Grad breit. Das entspricht in der geschätzten Entfernung zum Blasennebel zirka 375 Lichtjahren.

Zur Originalseite

Herz- und Seelennebel

Die beiden hellen Nebel im Bild sind der Herznebel (links) und der Seelenebel (rechts) im Sternbild Cassiopeia. Hier sind sie orangerot umrandet, ihr Inneres leuchtet blau.

Bildcredit und Bildrechte: David Lindemann

Liegen Herz und Seele unserer Galaxis in der Kassiopeia? Das vielleicht nicht, aber dort leuchten zwei helle Emissionsnebel mit den Spitznamen Herz und Seele. Der Herznebel hat die offizielle Bezeichnung IC 1805. Er liegt rechts im Bild. Seine Form erinnert an ein klassisches Herzsymbol. Beide Nebel leuchten hell im roten Licht von ionisiertem Wasserstoff.

Mehrere junge offene Sternhaufen besiedeln das Bild. Sie sind hier in Blau abgebildet, wie auch die Nebelzentren. Licht braucht zirka 6000 Jahre, um uns von diesen Nebeln aus zu erreichen. Zusammen sind sie ungefähr 300 Lichtjahre breit. Untersuchungen von Sternen und Haufen wie solchen, die man in Herz– und Seelennebel findet, sollen herausfinden, wie massereiche Sterne entstehen und wie sie ihre Umgebung beeinflussen.

Zur Originalseite