Der ungewöhnliche Nebel Pa 30

Der magentafarbene Nebel mit gelblichen radialen Strahlen erinnert an ein Feuerwerk.

Bildcredit: NASA, ESA, USAF, NSF; Bearbeitung: G. Ferrand (U. Manitoba), J. English (U. Manitoba), R. A. Fesen (Dartmouth), C. Treyturik (U. Manitoba); Text: G. Ferrand und J. English

Wie entstand dieses ungewöhnliche himmlische Feuerwerk? Der Nebel wird Pa 30 genannt. Er liegt in derselben Himmelsregion, wo im Jahr 1181 ein heller „Gaststern“ am Himmel stand. Die Fasern von Pa 30 sehen zwar ähnlich aus wie solche, die bei einer Nova (z. B. GK Per) oder einem planetarischen Nebel (z. B. NGC 6751) entstehen.

Trotzdem schlagen einige Astronom*innen vor, dass er durch eine seltene Art Supernova entstand: eine thermonukleare Explosion vom Typ Iax, die SN 1181 heißt. In diesem Modell entstand die Supernova nicht durch die Explosion eines einzigen Sterns. Stattdessen entsteht diese Explosion, wenn zwei Weiße Zwerge auf einer spiralförmigen Bahn zusammenlaufen und verschmelzen.

Der blaue Punkt in der Mitte ist wohl ein Zombiestern, nämlich der übrig gebliebene Weiße Zwerg, der die Supernova-ähnliche Explosion überdauert hat.

Für dieses Bild wurden mehrere Bilder und Datensets kombiniert, die mit Teleskopen für Infrarot (WISE), sichtbares Licht (MDM, Pan-STARRS) und Röntgen (Chandra, XMM) aufgenommen wurden. Zukünftige Beobachtungen und Analysen können uns noch mehr erzählen.

Info zur totalen Sonnenfinsternis am 8. April 2024

Zur Originalseite

Die planetarischen Nebel HFG1 und Abell 6

Zwischen roten Nebeln und wenigen Sternen leuchten zwei helle lila runde Nebel.

Bildcredit und Bildrechte: Julien Cadena und Mickael Coulon; Text: Natalia Lewandowska (SUNY Oswego)

Heckathorn-Fesen-Gull 1 (HFG1) und Abell 6 sind planetarische Nebel. Sie liegen im Sternbild Kassiopeia. Diese Nebel sind die Überreste von der Schlussphase eines Sterns mit mittlerer Masse wie unsere Sonne. Trotz ihrer Form haben planetarische Nebel nichts mit echten Planeten gemeinsam.

HFG1 ist links unten im Bild. Der Nebel wurde von V664 Cas erzeugt. Er ist ein Doppelsternsystem, das aus einem Weißen Zwergstern und einem Roten Riesenstern besteht. Beide Sterne umrunden ihren gemeinsamen Schwerpunkt in etwa einem halben Erdentag. V664 Cas und der Nebel, der ihn umgibt, rasen ungefähr 300 Mal schneller als der schnellste Zug der Erde durchs All. Dabei entsteht eine bläuliche, bogenförmige Stoßwelle. Sie wechselwirkt am stärksten mit dem interstellaren Medium in der Umgebung, wo der Bogen am hellsten leuchtet.

Nach etwa 10.000 Jahren werden planetarische Nebel unsichtbar. Grund dafür ist der Mangel an ultraviolettem Licht, das von den Sternen ausgeht, die den jeweiligen Nebel geschaffen haben. Planetarische Nebel haben oft schöne Formen und Strukturen. Daher sind sie begehrte Motive in der Astrofotografie.

Zur Originalseite

Supernovaüberrest Cassiopeia A

Mitten im Bild prangt eine runde Struktur aus vielen rosa-lila Fasern, die bei einer gewaltigen Sternexplosion entstanden sind. Die Struktur dehnt sich aus. Über allem liegen nebelartige weiße Dunstwolken.

Bildcredit: NASA, ESA, CSA, STScI; D. Milisavljevic (Purdue-Universität), T. Temim (Princeton-Universität), I. De Looze (Universität Gent)

Massereiche Sterne in der Milchstraße haben eine spektakuläre Existenz. Sie kollabieren aus riesigen kosmischen Wolken. Ihre Kernbrennöfen zünden und erzeugen in ihrem Inneren schwere Elemente. Die angereicherte Materie der massereichsten Sterne wird nach ein paar Millionen Jahren in den interstellaren Raum geschleudert. Dann beginnt die Sternbildung von Neuem.

Diese Trümmerwolke mit der Bezeichnung Cassiopeia A dehnt sich aus. Sie ist ein Beispiel für die Schlussphase der Sternentwicklung. Das Licht der Supernovaexplosion, bei der dieser Überrest entstand, war vor etwa 350 Jahren erstmals am Himmel des Planeten Erde zu sehen. Doch das Licht brauchte 11.000 Jahre, um uns zu erreichen.

Dieses scharfe Bild des Weltraumteleskops Webb entstand mit der NIRCam. Es zeigt die Fasern und Knoten im Supernovaüberrest, die immer noch heiß sind. Die weißliche, rauchige äußere Hülle der expandierenden Explosionswelle ist etwa 20 Lichtjahre groß. Der helle Fleck in der Mitte ist ein Neutronenstern. Das ist der unglaublich dichte, kollabierte Überrest eines massereichen Sternkerns.

Webbs detailreiches Bild vom Überrest der Supernova Cassiopeia A zeigt auch Lichtechos von der zerstörerischen Explosion des massereichen Sterns.

Zur Originalseite

Deep Field: Der Herznebel

In dem bildfüllenden Nebelfeld, das organgefarben leuchtet und stark strukturiert ist, befinden sich der Herznebel, der Fischkopfnebel und Melotte 15.

Bildcredit und Bildrechte: William Ostling, Telescope Live

Was regt den Herznebel an? Zunächst einmal sieht der große Emissionsnebel auf der linken Seite, der als IC 1805 katalogisiert ist, ein wenig wie ein menschliches Herz aus. Der Nebel leuchtet hell in rotem Licht, das von seinem wichtigsten Element, dem Wasserstoff, ausgestrahlt wird. Dieses lang belichtete Bild (Deep Field) wurde aber von Licht überlagert, das von Silizium (gelb) und Sauerstoff (blau) ausgestrahlt wird.

Mitten im Herznebel befinden sich die jungen Sterne im offenen Sternhaufen Melotte 15. Diese Sterne tragen mit ihrem energiereichen Licht und ihren Winden mehrere malerische Staubsäulen ab. Der Herznebel ist etwa 7500 Lichtjahre entfernt. Er liegt im Sternbild Kassiopeia. Rechts unter dem Herznebel liegt der Fischkopfnebel. Dieses breite, detailreiche Bild zeigt deutlich, dass leuchtendes Gas den Herznebel in alle Richtungen umgibt.

Ein Deep Field ist eine Aufnahme eines Himmelsareals, das lang belichtet wurde. Dadurch werden dunkle, weit entfernte Objekte sichtbar.

Zur Originalseite

Die Geister von Gamma Cas

Rechts oben leuchtet ein blauer Stern mit Zacken, von links oben breitet sich nach unten ein rötlich leuchtender Nebel aus.

Bildcredit und Bildrechte: Guillaume Gruntz, Jean-François Bax

Gamma Cassiopeiae leuchtet im Herbst hoch am nördlichen Abendhimmel. Der helle, gezackte Stern im Teleskopsichtfeld befindet sich im Sternbild Kassiopeia. Gamma Cas teilt sich die spukhafte Szene mit den gespenstischen interstellaren Wolken IC 59 (links oben) und IC 63, die aus Gas und Staub bestehen.

Die Wolken sind etwa 600 Lichtjahre entfernt. Sie sind keine Geister, doch sie verschwinden langsam, weil sie unter dem Einfluss der energiereichen Strahlung des heißen, leuchtstarken Sterns Gamma Cas abgetragen werden. Gamma Cas ist physisch nur 3 bis 4 Lichtjahre vom Nebel entfernt.

IC 63 liegt etwas näher an Gamma Cas. Er strahlt in rotem H-alpha-Licht, das abgestrahlt wird, wenn Wasserstoffatome mit Elektronen rekombinieren, nachdem sie zuvor von der Ultraviolettstrahlung des Sterns ionisiert wurden. IC 59 ist weiter vom Stern entfernt. Er hat einen geringeren Anteil an H-alpha-Emission, aber mehr von dem blauen Farbton, der charakteristisch ist für Staub, der Sternenlicht reflektiert.

Die kosmische Bühne umfasst am Himmel mehr als 1 Grad oder 10 Lichtjahre in der geschätzten Entfernung von Gamma Cas mit Begleitung.

Zur Originalseite

Sternbildung im Pacman-Nebel NGC 281

Der Emissionsnebel NGC 281 im Bild leuchtet innen blau und ist von einem orange-roten Grat umgeben. Links ragt eine dunkle Wolke in den Nebel hinein. Der Nebel erinnert an Pacman.

Bildcredit und Bildrechte: Craig Stocks

Beim Blick durch die kosmische Wolke, die als NGC 281 katalogisiert ist, entgeht euch vielleicht der offene Sternhaufen IC 1590. Die jungen, massereichen Sterne dieses Haufens sind im Nebel entstanden und liefern die Energie für das allgegenwärtige Leuchten im Nebel.

Die auffälligen Formen im Porträt von NGC 281 sind die Silhouetten von staubigen Säulen und dichten Bok-Globulen, die von intensiven, energiereichen Winden und der Strahlung der heißen Haufensterne erodiert wurden. Wenn sie lange genug überleben, werden die staubigen Strukturen vielleicht zu Orten künftiger Sternbildung.

NGC 281 wird wegen seiner Form spielerisch Pacman-Nebel genannt. Der Nebel ist etwa 10.000 Lichtjahre entfernt und befindet sich im Sternbild Kassiopeia. Dieses scharfe Kompositbild entstand mit Schmalbandfiltern. Es kombiniert Emissionen von Wasserstoff- und Sauerstoffatomen im Nebel, um rote, grüne und blaue Farben zu erzielen. Die Szene umfasst in der geschätzten Entfernung von NGC 281 mehr als 80 Lichtjahre.

Zur Originalseite

Cassiopeia A wiederverwerten

Vor einem schwarzen Himmel mit wenigen Sternen leuchten die Fasern eines Supernovaüberrestes in Blau, Violett und Hellgelb.

Bildcredit: Röntgen – NASA, CXC, SAO; Optisch – NASA,STScI

Massereiche Sterne in unserer Milchstraße führen ein spektakuläres Leben. Riesige kosmische Wolken kollabieren, zünden darin ihre Kernbrennöfen und erzeugen schwere Elemente. Nach wenigen Millionen Jahren wird das angereicherte Material in den interstellaren Raum zurückgeschleudert, wo von Neuem Sternbildung beginnen kann.

Diese Trümmerwolke dehnt sich aus. Sie ist als Cassiopeia A bekannt und ein Beispiel für die Schlussphase im stellaren Entwicklungszyklus. Das Licht der Explosion, aus der dieser Supernovaüberrest entstand, war vor etwa 350 Jahren erstmals am Himmel des Planeten Erde zu sehen, doch es dauerte ungefähr 11.000 Jahre, bis es zu uns gelangte.

Dieses Falschfarbenbild entstand aus Röntgen- und optischen Bilddaten des Röntgen-Observatoriums Chandra und des Weltraumteleskops Hubble. Es zeigt die immer noch heißen Fasern und Knoten im Überrest. Dieser ist bei der geschätzten Entfernung von Cassiopeia A etwa 30 Lichtjahre groß.

Die energiereichen Röntgenemissionen bestimmter Elemente wurden farblich codiert: Silizium in Rot, Schwefel in Gelb, Kalzium in Grün und Eisen in Violett. Das hilft Forschenden, die Wiederverwertung des Sternenstoffs in unserer Galaxis zu untersuchen. Die äußere, blau abgebildete Druckwelle expandiert immer noch. Der helle Fleck beim Zentrums ist ein Neutronenstern, das ist der unglaublich dichte, kollabierte Überrest des massereichen Sternkerns.

Zur Originalseite

Der Supernovaüberrest des Medullanebels

In der Mitte des Bildes mit Sternennebeln leuchtet ein runder Nebel aus Fasern, der auf einer Seite blau und links unten rot leuchtet.

Bildcredit und Bildrechte: Kimberly Sibbald

Wie entstand dieser ungewöhnliche Nebel? CTB-1 ist eine Gashülle, die sich ausdehnt. Sie blieb zurück, als vor etwa 10.000 Jahren ein massereicher Stern im Sternbild Kassiopeia explodierte. Wahrscheinlich detonierte der Stern, als die Elemente um seinen Kern, die durch Kernfusion einen stabilisierenden Druck nach außen erzeugen konnten, zur Neige gingen.

Die Form des Supernovaüberrestes, der dabei entstand, erinnert an ein Gehirn. Daher wird er landläufig als Medullanebel bezeichnet. Durch die Hitze, die bei seiner Kollision mit dem umgebenden interstellaren Gas entstand, leuchtet er noch in sichtbarem Licht. Warum der Nebel auch in Röntgenlicht leuchtet, ist jedoch ein Rätsel.

Eine Hypothese besagt, dass bei der Explosion auch ein energiereicher Pulsar entstand, der den Nebel mit einem schnellen, nach außen gerichteten Wind mit Energie versorgt. Bei der Überprüfung dieser Vermutung entdeckte man kürzlich in Radiowellenlängen einen Pulsar, der anscheinend bei der Supernovaexplosion mit mehr als 1000 Kilometern pro Sekunde ausgestoßen wurde.

Dieses Bild wurde in Seven Persons im kanadischen Alberta mit einem Teleskop aufgenommen. Obwohl der Medullanebel so groß erscheint wie der Vollmond, ist er so blass, dass für das Foto viele Stunden Belichtungszeit nötig waren.

Zur Originalseite