Pandoras Galaxienhaufen

Dieses Bild zeigt fast nur Galaxien. Ein Stern mit sechs Zacken rechts neben der Mitte ist eine Ausnahme, er liegt in der Milchstraße. Die Galaxien liegen entweder im Pandora-Galaxienhaufen Abell 2744 oder weit dahinter. Beschreibung im Text.

Bildcredit: NASA, ESA, CSA, Ivo Labbe (Swinburne), Rachel Bezanson (Universität von Pittsburgh), Bearbeitung: Alyssa Pagan (STScI)

Dieses detailreiche Mosaikbild zeigt den Galaxienhaufen Abell 2744. Die Aufnahmen stammen von der NIRCam, die am James-Webb-Weltraumteleskop montiert ist. Abell 2744 ist auch als Pandoras Galaxienhaufen bekannt. Er entsteht offenbar bei der schwerfälligen Verschmelzung von drei massereichen Galaxienhaufen. Abell 2744 ist etwa 3,5 Milliarden Lichtjahre entfernt im Sternbild Bildhauer (Sculptor) zu finden.

Dunkle Materie dominiert den Megahaufen. Sie krümmt und verzerrt die Raumzeit. Dabei werden Objekte, die noch weiter entfernt sind, durch Gravitationslinsen betont. Viele der Lichtquellen, die durch die Gravitationslinsen verstärkten werden, sind sehr ferne Galaxien im frühen Universum. Sie sind röter als die Galaxien in Pandoras Galaxienhaufen. Ihre Abbilder sind zu Bögen verzerrt.

Die markanten Lichtkreuze stammen von Sternen im Vordergrund in der Milchstraße. In der geschätzten Entfernung des Pandora-Galaxienhaufens ist dieser Ausschnitt etwa 6 Millionen Lichtjahre breit. Doch nur keine Panik! Man kann die faszinierende Region in einem 2-minütigen Video erforschen.

Zur Originalseite

NGC 6357: Kathedrale für massige Sterne

In dem blau hinterlegten Bild sind Sterne verteilt. Im unteren Teil und ganz rechts sieht man braune und ockerfarbige Nebelstrukturen.

Bildcredit: NASA, ESA, CSA, STScI, JWST; Bearbeitung: Alyssa Pagan (STScI); Überlagertes Bild: NASA, ESA, HST und J. M. Apellániz (IAA, Spain); Danksagung: D. De Martin (ESA/Hubble)

Wie massereich kann ein normaler Stern sein? Aufgrund der Entfernung, Helligkeit und sogenannten Standard-Sonnenmodellen wurde die Masse eines Sterns im offenen Sternhaufen Pismis 24 geschätzt. Seine Masse entspricht der 200-fachen Sonnenmasse. Das macht ihn zu einem der massereichsten Sterne, die man kennt.

Dieser Stern ist das hellste Objekt in der oberen Bildhälfte. Er ist auch als Pismis 24-1 bekannt. Das Foto wurde mit dem James-Webb-Weltraumteleskop im infraroten Licht aufgenommen. Zum Vergleich ist ein Bild darüber gelegt, das vom Hubble-Weltraumteleskop im sichtbaren Licht aufgenommen wurde.

Bei genauerer Untersuchung der Bilder stellte sich heraus, dass Pismis 24-1 seine brillante Leuchtkraft nicht nur einem, sondern mindestens drei Sternen verdankt. Die einzelnen Sterne haben immer noch eine Masse von rund 100 Sonnenmassen. Damit gehören auch sie zu den massereichsten Sternen, die wir kennen.

Am unteren Bildrand befindet sich der dazugehörige Emissionsnebel NGC 6357. Dort bilden sich nach wie vor weitere Sterne. Es scheint, als würden die energiereichen Sterne nahe dem Zentrum aus ihrem spektakulärem Kokon herausbrechen und ihn beleuchten. Der himmlische Anblick erinnert stark an eine gotische Kathedrale.

Zur Originalseite

IRAS 04302: In der Schmetterlingsscheibe entsteht ein Planet

Der Nebel im Bild erinnert an einen Schmetterling. In der Mitte ist ein Staubring, den wir von der Kante sehen. Im Bild sind mehrere Galaxien verteilt, die größte davon ist links unten.

Bildcredit: NASA, ESA, CSA, Webb; Bearbeitung: M. Villenave et al.

Dieser Schmetterling kann Planeten bilden. Die Nebelwolke, die sich vom Stern IRAS 04302+2247 ausbreitet, sieht aus wie die Flügel eines Schmetterlings, während der vertikale braune Streifen in der Mitte wie der Körper des Schmetterlings aussieht. Doch zusammen deuten sie auf ein aktives System hin, in dem Planeten entstehen.

Dieses Bild wurde kürzlich vom Weltraumteleskop Webb im Infrarotlicht aufgenommen. Die vertikale Scheibe im Bild ist dicht mit Gas und Staub gefüllt. Daraus entstehen Planeten. Die Scheibe verdeckt das sichtbare und (fast) das gesamte Infrarotlicht des Zentralsterns, sodass man einen guten Blick auf den umgebenden Staub hat, der das Licht reflektiert.

In den nächsten Millionen Jahren spaltet sich die Staubscheibe wahrscheinlich durch die Schwerkraft neu entstandener Planeten in Ringe auf. Und in einer Milliarde Jahren löst sich das verbleibende Gas und der Staub wahrscheinlich auf. Dann bleiben hauptsächlich die Planeten übrig – wie in unserem Sonnensystem.

Zur Originalseite

Webb zeigt den komplexen planetarischen Nebel NGC 6072

Der planetarische Nebel NGC 5072 ist hier sehr detailreich dargestellt. Er vermittelt den Eindruck einer Explosion, seine braunrot leuchtenden Fasern bilden ein engmaschiges Netz.

Bildcredit: NASA, ESA, CSA, STScI, JWST

Warum ist dieser Nebel so komplex? Das James-Webb-Weltraumteleskop hat eine detaillierte Aufnahme des Nebels NGC 6072 gemacht. Wahrscheinlich war er zuvor ein sonnenähnlicher Stern. Mit seinem Aussehen ist NGC 6072 ein eher ungewöhnlicher Vertreter eines planetarischen Nebels.

Dieses Bild wurde im Infrarotlicht aufgenommen. Kühler Wasserstoff wird hier in roter Farbe dargestellt.

Untersuchungen früherer Aufnahmen zeigen, dass es gleich mehrere Materieausflüsse und auch zwei Scheiben aus verwirbeltem Gas geben muss. Das Webb-Bild deckt weitere Details auf. Dazu gehört auch der Rand einer Scheibe, der in der Mitte des linken Bildrands deutlich zu sehen ist.

Die führende Hypothese der Entstehung besagt, dass das komplexe Aussehen von einem weiteren Stern nahe beim Zentrum verursacht wird. Ein Begleiter in solchen Mehrfach-Sternsystemen prägt mit mehreren Ausbrüchen das Erscheinungsbild dieser planetarischen Nebel.

Zur Originalseite

Weltraumteleskop Webb zeigt den Katzenpfotennebel

Drei rundliche bläuliche Nebelwolken mit einem bräunlichen Nebelrand eingehüllt in weitere bräunliche Nebelschwaden vor einem Sternenhintergrund. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, CSA, STScI

So wie Katzen häufig in Schwierigkeiten geraten, werden Nebel häufig nach bekannten Formen benannt. Doch keine Katze hätte den riesigen Katzenpfotennebel schaffen können. Er liegt in Richtung des Sternbilds Skorpion (Scorpius). Seine Entfernung beträgt rund 5700 Lichtjahre.

Der Katzenpfotennebel ist ein Emissionsnebel. Er liegt in einer größeren Molekülwolke, die als NGC 6334 katalogisiert ist. Sie ist auch als Bärenklauennebel bekannt. In ihr sind allein in den letzten Millionen Jahren Sterne entstanden, die fast die zehnfache Masse unserer Sonne haben.

Das James-Webb-Teleskop nahm dieses Bild der Katzenpfote vor Kurzem im Infrarotlicht auf. Dieser neue Detailblick in den Nebel liefert Erkenntnisse darüber, wie in turbulenten Molekülwolken aus Gas Sterne entstehen.

Zur Originalseite

Webb zeigt die Spiralgalaxie NGC 2566

Vor dem Sternenhimmel ist eine ovale Galaxie zu sehen. Die äußeren Ringe zeigen viele helle blaue Sterne. In der Mitte ist ein heller Kern mit acht hervorstehenden Spitzen zu erkennen.

Bildcredit: ESA/Webb, NASA und CSA, A. Leroy

Was geht im Zentrum der Spiralgalaxie NGC 2566 vor sich? Die acht Strahlen, die aus der Mitte zu kommen scheinen, sind nicht wirklich vorhanden. Sie sind Beugungsspitzen in diesem Infrarotbild. Sie entstehen durch die mechanische Struktur des Webb-Weltraumteleskops.

Das Zentrum von NGC 2566 ist hell, aber nicht ungewöhnlich. Das bedeutet, dass es wahrscheinlich ein extrem massereiches Schwarzes Loch enthält. Dieses ist derzeit aber nicht sehr aktiv. NGC 2566 ist nur 76 Millionen Lichtjahre von uns entfernt. Deshalb hat sie das Licht, das wir heute von ihr sehen, zu einer Zeit ausgestrahlt, als noch Dinosaurier auf der Erde lebten.

Weil die malerische Galaxie so nah ist, können irdische Teleskope – darunter Webb und Hubble – Details erkennen. Sie können die turbulenten Gas- und Staubwolken, in denen Sterne entstehen können, erkennen. So können die Teleskope die Entwicklung von Sternen untersuchen.

NGC 2566, die in ihrer Größe unserer Milchstraße ähnelt, zeichnet sich durch ihren hellen zentralen Balken und ihre markanten äußeren Spiralarme aus.

Zur Originalseite

M1: Die unglaublich wachsende Krabbe

Der Krebsnebel M1 wurde so vom James-Webb-Weltraumteleskop aufgenommen. Das überlagerte Bild ist derselbe Krebsnebel, aber vom Hubble-Weltraumteleskop. Das Webb-Bild wurde im nahen Infrarotlicht aufgenommen, das Hubble-Bild wurde im sichtbaren Licht aufgenommen.

Bildcredit: NASA, ESA, CSA, STScI; Jeff Hester (ASU), Allison Loll (ASU), Tea Temim (Princeton-Universität)

Der Krabbennebel trägt die Bezeichnung M1. Er ist der erste Eintrag in Charles Messiers berühmter Liste von Objekten, die keine Kometen sind. Beim Krabbennebel handelt es sich um der Überrest einer Supernova. Er ist eine sich ausdehnende Wolke aus Gas und Staub. Sie entstand am Ende der Existenz eines massereichen Sterns. Astronomen beobachteten die dramatische Entstehung des Krabbennebels im Jahr 1054.

Der Nebel hat einen Durchmesser von rund 10 Lichtjahren. Er dehnt sich noch immer mit einer Geschwindigkeit von etwa 1.500 Kilometern pro Sekunde aus. Ihr könnt diese Ausdehnung erkennen. Vergleicht dafür diese scharfen Bilder der dynamischen, zerbrochenen Filamente des Krabbennebels. Das Hubble-Weltraumteleskop hat sie im Jahr 2005 im sichtbaren Licht aufgenommen. Die Aufnahme des James-Webb-Weltraumteleskops im Infrarotlicht stammt aus dem Jahr 2023.

Dieses kosmische Krustentier befindet sich etwa 6500 Lichtjahre von uns entfernt in Richtung des Sternbilds Stier.

Zur Originalseite

Der junge Sternhaufen NGC 346

Das Bild des Weltraumteleskops Webb zeigt einen Sternhaufen aus massereichen Sternen in der Kleinen Magellanschen Wolke. Im Bild sind auch viele lose Sterne und Emissionsnebel verteilt.

ForschungNASA, ESA, CSA, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA); Bearbeitung – Alyssa Pagan (STScI), Nolan Habel (USRA), Laura Lenkić (USRA), Laurie E. U. Chu (NASA Ames)

Der massereichste junge Sternhaufen in der Kleinen Magellanschen Wolke ist NGC 346. Er ist rund 210.000 Lichtjahre entfernt und in das größte Sternbildungsgebiet unserer kleinen Begleitgalaxie eingebettet.

Die massereichen Sterne von NGC 346 sind zwar kurzlebig, aber äußerst energiereich. Ihre Winde und Strahlung formen die Ränder der staubigen Molekülwolke und lösen dort weitere Sternbildung aus. Das Sternentstehungsgebiet enthält anscheinend zudem eine große Zahl junger Sterne. Diese sind gerade einmal 3 bis 5 Millionen Jahre alt. Sie haben noch nicht damit begonnen, Wasserstoff in ihren Kernen zu fusionieren. Diese jungen Sterne liegen über den eingebetteten Sternhaufen verstreut.

Die spektakuläre Infrarotaufnahme von NGC 346 stammt von der NIRCam am James-Webb-Weltraumteleskop. Die Emissionen in der Sternbildungsregion leuchten rosa und orangefarben. Sie stammen von atomarem Wasserstoff, der durch die energiereiche Strahlung der massereichen Sterne ionisiert wurde, sowie von molekularem Wasserstoff und Staub. Webbs gestochen scharfes Bild des jungen Sternentstehungsgebiets ist in der Entfernung der Kleinen Magellanschen Wolke 240 Lichtjahre breit.

Zur Originalseite