Webb zeigt den komplexen planetarischen Nebel NGC 6072

Der planetarische Nebel NGC 5072 ist hier sehr detailreich dargestellt. Er vermittelt den Eindruck einer Explosion, seine braunrot leuchtenden Fasern bilden ein engmaschiges Netz.

Bildcredit: NASA, ESA, CSA, STScI, JWST

Warum ist dieser Nebel so komplex? Das James-Webb-Weltraumteleskop hat eine detaillierte Aufnahme des Nebels NGC 6072 gemacht. Wahrscheinlich war er zuvor ein sonnenähnlicher Stern. Mit seinem Aussehen ist NGC 6072 ein eher ungewöhnlicher Vertreter eines planetarischen Nebels.

Dieses Bild wurde im Infrarotlicht aufgenommen. Kühler Wasserstoff wird hier in roter Farbe dargestellt.

Untersuchungen früherer Aufnahmen zeigen, dass es gleich mehrere Materieausflüsse und auch zwei Scheiben aus verwirbeltem Gas geben muss. Das Webb-Bild deckt weitere Details auf. Dazu gehört auch der Rand einer Scheibe, der in der Mitte des linken Bildrands deutlich zu sehen ist.

Die führende Hypothese der Entstehung besagt, dass das komplexe Aussehen von einem weiteren Stern nahe beim Zentrum verursacht wird. Ein Begleiter in solchen Mehrfach-Sternsystemen prägt mit mehreren Ausbrüchen das Erscheinungsbild dieser planetarischen Nebel.

Zur Originalseite

Weltraumteleskop Webb zeigt den Katzenpfotennebel

Drei rundliche bläuliche Nebelwolken mit einem bräunlichen Nebelrand eingehüllt in weitere bräunliche Nebelschwaden vor einem Sternenhintergrund. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, CSA, STScI

So wie Katzen häufig in Schwierigkeiten geraten, werden Nebel häufig nach bekannten Formen benannt. Doch keine Katze hätte den riesigen Katzenpfotennebel schaffen können. Er liegt in Richtung des Sternbilds Skorpion (Scorpius). Seine Entfernung beträgt rund 5700 Lichtjahre.

Der Katzenpfotennebel ist ein Emissionsnebel. Er liegt in einer größeren Molekülwolke, die als NGC 6334 katalogisiert ist. Sie ist auch als Bärenklauennebel bekannt. In ihr sind allein in den letzten Millionen Jahren Sterne entstanden, die fast die zehnfache Masse unserer Sonne haben.

Das James-Webb-Teleskop nahm dieses Bild der Katzenpfote vor Kurzem im Infrarotlicht auf. Dieser neue Detailblick in den Nebel liefert Erkenntnisse darüber, wie in turbulenten Molekülwolken aus Gas Sterne entstehen.

Zur Originalseite

Webb zeigt die Spiralgalaxie NGC 2566

Vor dem Sternenhimmel ist eine ovale Galaxie zu sehen. Die äußeren Ringe zeigen viele helle blaue Sterne. In der Mitte ist ein heller Kern mit acht hervorstehenden Spitzen zu erkennen.

Bildcredit: ESA/Webb, NASA und CSA, A. Leroy

Was geht im Zentrum der Spiralgalaxie NGC 2566 vor sich? Die acht Strahlen, die aus der Mitte zu kommen scheinen, sind nicht wirklich vorhanden. Sie sind Beugungsspitzen in diesem Infrarotbild. Sie entstehen durch die mechanische Struktur des Webb-Weltraumteleskops.

Das Zentrum von NGC 2566 ist hell, aber nicht ungewöhnlich. Das bedeutet, dass es wahrscheinlich ein extrem massereiches Schwarzes Loch enthält. Dieses ist derzeit aber nicht sehr aktiv. NGC 2566 ist nur 76 Millionen Lichtjahre von uns entfernt. Deshalb hat sie das Licht, das wir heute von ihr sehen, zu einer Zeit ausgestrahlt, als noch Dinosaurier auf der Erde lebten.

Weil die malerische Galaxie so nah ist, können irdische Teleskope – darunter Webb und Hubble – Details erkennen. Sie können die turbulenten Gas- und Staubwolken, in denen Sterne entstehen können, erkennen. So können die Teleskope die Entwicklung von Sternen untersuchen.

NGC 2566, die in ihrer Größe unserer Milchstraße ähnelt, zeichnet sich durch ihren hellen zentralen Balken und ihre markanten äußeren Spiralarme aus.

Zur Originalseite

M1: Die unglaublich wachsende Krabbe

Der Krebsnebel M1 wurde so vom James-Webb-Weltraumteleskop aufgenommen. Das überlagerte Bild ist derselbe Krebsnebel, aber vom Hubble-Weltraumteleskop. Das Webb-Bild wurde im nahen Infrarotlicht aufgenommen, das Hubble-Bild wurde im sichtbaren Licht aufgenommen.

Bildcredit: NASA, ESA, CSA, STScI; Jeff Hester (ASU), Allison Loll (ASU), Tea Temim (Princeton-Universität)

Der Krabbennebel trägt die Bezeichnung M1. Er ist der erste Eintrag in Charles Messiers berühmter Liste von Objekten, die keine Kometen sind. Beim Krabbennebel handelt es sich um der Überrest einer Supernova. Er ist eine sich ausdehnende Wolke aus Gas und Staub. Sie entstand am Ende der Existenz eines massereichen Sterns. Astronomen beobachteten die dramatische Entstehung des Krabbennebels im Jahr 1054.

Der Nebel hat einen Durchmesser von rund 10 Lichtjahren. Er dehnt sich noch immer mit einer Geschwindigkeit von etwa 1.500 Kilometern pro Sekunde aus. Ihr könnt diese Ausdehnung erkennen. Vergleicht dafür diese scharfen Bilder der dynamischen, zerbrochenen Filamente des Krabbennebels. Das Hubble-Weltraumteleskop hat sie im Jahr 2005 im sichtbaren Licht aufgenommen. Die Aufnahme des James-Webb-Weltraumteleskops im Infrarotlicht stammt aus dem Jahr 2023.

Dieses kosmische Krustentier befindet sich etwa 6500 Lichtjahre von uns entfernt in Richtung des Sternbilds Stier.

Zur Originalseite

Der junge Sternhaufen NGC 346

Das Bild des Weltraumteleskops Webb zeigt einen Sternhaufen aus massereichen Sternen in der Kleinen Magellanschen Wolke. Im Bild sind auch viele lose Sterne und Emissionsnebel verteilt.

ForschungNASA, ESA, CSA, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA); Bearbeitung – Alyssa Pagan (STScI), Nolan Habel (USRA), Laura Lenkić (USRA), Laurie E. U. Chu (NASA Ames)

Der massereichste junge Sternhaufen in der Kleinen Magellanschen Wolke ist NGC 346. Er ist rund 210.000 Lichtjahre entfernt und in das größte Sternbildungsgebiet unserer kleinen Begleitgalaxie eingebettet.

Die massereichen Sterne von NGC 346 sind zwar kurzlebig, aber äußerst energiereich. Ihre Winde und Strahlung formen die Ränder der staubigen Molekülwolke und lösen dort weitere Sternbildung aus. Das Sternentstehungsgebiet enthält anscheinend zudem eine große Zahl junger Sterne. Diese sind gerade einmal 3 bis 5 Millionen Jahre alt. Sie haben noch nicht damit begonnen, Wasserstoff in ihren Kernen zu fusionieren. Diese jungen Sterne liegen über den eingebetteten Sternhaufen verstreut.

Die spektakuläre Infrarotaufnahme von NGC 346 stammt von der NIRCam am James-Webb-Weltraumteleskop. Die Emissionen in der Sternbildungsregion leuchten rosa und orangefarben. Sie stammen von atomarem Wasserstoff, der durch die energiereiche Strahlung der massereichen Sterne ionisiert wurde, sowie von molekularem Wasserstoff und Staub. Webbs gestochen scharfes Bild des jungen Sternentstehungsgebiets ist in der Entfernung der Kleinen Magellanschen Wolke 240 Lichtjahre breit.

Zur Originalseite

Webb zeigt eine Galaxie, die eine Galaxie bricht

Eine elliptische hell leuchtende Galaxie ist von einem verzerrt wirkenden Spiralgalaxie in blauen und roten Farbtönen umgeben.

Bildcredit: ESA/Webb, NASA und CSA, G. Mahler

Ist das eine Galaxie oder sind es zwei? Auch wenn es wie eine scheint, sind es zwei. Ein möglicher Grund dafür: Eine kleine Galaxie stößt mit einer größeren zusammen und landet in deren Zentrum.

In diesem Bild seht ihr etwas Selteneres. Hier ist die zentrale helle, elliptische Galaxie viel näher als die blau und rot gefärbte Spiralgalaxie um sie herum. Das kann passieren, wenn nahe und ferne Galaxien genau auf einer Linie stehen. Dann kann die Schwerkraft der nahen Galaxie das Licht der fernen Galaxie um sich herum biegen. Dieses Phänomen heißt Gravitationslinse.

Das James-Webb-Weltraumteleskop hat die doppelte Galaxie aufgenommen. Das Bild zeigt einen vollständigen Einstein-Ring und viele Details in beiden Galaxien. Solche Galaxien mit Gravitationslinsen liefern neue Informationen: Zum einen über die Verteilung der Masse in der Galaxie im Vordergrund und zum anderen über die Verteilung der Helligkeit der Galaxie im Hintergrund.

Zur Originalseite

Webb zeigt den planetarischen Nebel NGC 1514

Der planetarische Nebel NGC 1514 im Sternbild Stier ist in Infrarotlicht sanduhrförmig. In der Mitte leuchtet er rot. Zwei Ringe sind anscheinend die Wülste an den Enden eines Zylinders, den wir schräg von oben sehen.

Bildcredit: NASA, ESA, CSA, M. E. Ressler (JPL) et al.; Bearbeitung: Judy Schmidt

Was passiert, wenn einem Stern der Kernbrennstoff ausgeht? Bei Sternen wie unserer Sonne verdichtet sich das Zentrum zu einem Weißen Zwerg. Währenddessen wird die äußere Atmosphäre ins All ausgestoßen. Sie erscheint als planetarischer Nebel.

Die abgestoßene äußere Atmosphäre des planetarischen Nebels NGC 1514 ist anscheinend ein Durcheinander aus Blasen – wenn man sie in sichtbarem Licht betrachtet. Doch diese Ansicht des Weltraumteleskops James Webb in Infrarot erzählt eine andere Geschichte. In diesem Licht hat der Nebel eine ausgeprägte Sanduhrform, die als Zylinder interpretiert wird. Wir blicken entlang der Diagonale darauf.

In der Mitte des Nebels erkennt ihr bei genauem Hinsehen auch einen hellen Zentralstern. Er gehört wahrscheinlich zu einem Doppelsternsystem. Weitere Beobachtungen zeigen vielleicht besser, wie sich dieser Nebel entwickelt und wie die Zentralsterne zusammenwirken, um die Zylinder und Blasen zu erzeugen, die wir sehen.

Springe durchs Universum: APOD-Zufallsgenerator

Zur Originalseite

MeerKAT zeigt das galaktische Zentrum in Radio

Falschfarbenbild in Gelb- und Blautönen vom galaktischen Zentrum im Radiobereich. Verschiedene Wolken, Blasen und Fäden lassen sich erkennen.

Bildcredit: NASA, ESA, CSA, STScI, SARAO, S. Crowe (UVA), J. Bally (CU), R. Fedriani (IAA-CSIC), I. Heywood (Oxford)

Was geht im Zentrum unserer Galaxie vor sich? Mit optischen Teleskopen ist das schwer zu beurteilen. Denn Staub zwischen den Sternen verschluckt das sichtbare Licht. Bei anderen Wellenlängen wie im Radiobereich kann man das galaktische Zentrum beobachten. Dann ist es eine interessante und aktive Region.

Dieses Bild zeigt das Zentrum unserer Milchstraße. MeerKAT, eine Anlage aus 64 Radioteleskopen in Südafrika, hat es aufgenommen. Es ist so breit wie vier Vollmonde am Himmel (2 Grad). Dank langer Belichtungszeit zeigt es viele Details.

Ihr könnt viele bekannte Quellen klar und detailliert erkennen. Viele tragen das Präfix „Sgr“. Der Grund: Das galaktische Zentrum befindet sich in Richtung des Sternbilds Schütze (Sagittarius).

Im Zentrum unserer Galaxie liegt Sgr A, in der sich das zentrale, extrem massereiche Schwarze Loch der Milchstraße befindet. Andere Radioquellen im Bild sind nicht so gut erforscht. Dazu zählt der Bogen links von Sgr A und zahlreiche fadenartige Strukturen.

Das James-Webb-Weltraumteleskop hat kürzlich einen kleinen Himmelsbereich beobachtet. Damit sollen die Auswirkungen von Magnetfeldern auf die Sternentstehung untersucht werden. Ihr seht das Bild der Infrarotkamera im eingefügten Bild rechts oben.

Zur Originalseite