Webb zeigt die Spiralgalaxie NGC 2566

Vor dem Sternenhimmel ist eine ovale Galaxie zu sehen. Die äußeren Ringe zeigen viele helle blaue Sterne. In der Mitte ist ein heller Kern mit acht hervorstehenden Spitzen zu erkennen.

Bildcredit: ESA/Webb, NASA und CSA, A. Leroy

Was geht im Zentrum der Spiralgalaxie NGC 2566 vor sich? Die acht Strahlen, die aus der Mitte zu kommen scheinen, sind nicht wirklich vorhanden. Sie sind Beugungsspitzen in diesem Infrarotbild. Sie entstehen durch die mechanische Struktur des Webb-Weltraumteleskops.

Das Zentrum von NGC 2566 ist hell, aber nicht ungewöhnlich. Das bedeutet, dass es wahrscheinlich ein extrem massereiches Schwarzes Loch enthält. Dieses ist derzeit aber nicht sehr aktiv. NGC 2566 ist nur 76 Millionen Lichtjahre von uns entfernt. Deshalb hat sie das Licht, das wir heute von ihr sehen, zu einer Zeit ausgestrahlt, als noch Dinosaurier auf der Erde lebten.

Weil die malerische Galaxie so nah ist, können irdische Teleskope – darunter Webb und Hubble – Details erkennen. Sie können die turbulenten Gas- und Staubwolken, in denen Sterne entstehen können, erkennen. So können die Teleskope die Entwicklung von Sternen untersuchen.

NGC 2566, die in ihrer Größe unserer Milchstraße ähnelt, zeichnet sich durch ihren hellen zentralen Balken und ihre markanten äußeren Spiralarme aus.

Zur Originalseite

M1: Die unglaublich wachsende Krabbe

Der Krebsnebel M1 wurde so vom James-Webb-Weltraumteleskop aufgenommen. Das überlagerte Bild ist derselbe Krebsnebel, aber vom Hubble-Weltraumteleskop. Das Webb-Bild wurde im nahen Infrarotlicht aufgenommen, das Hubble-Bild wurde im sichtbaren Licht aufgenommen.

Bildcredit: NASA, ESA, CSA, STScI; Jeff Hester (ASU), Allison Loll (ASU), Tea Temim (Princeton-Universität)

Der Krabbennebel trägt die Bezeichnung M1. Er ist der erste Eintrag in Charles Messiers berühmter Liste von Objekten, die keine Kometen sind. Beim Krabbennebel handelt es sich um der Überrest einer Supernova. Er ist eine sich ausdehnende Wolke aus Gas und Staub. Sie entstand am Ende der Existenz eines massereichen Sterns. Astronomen beobachteten die dramatische Entstehung des Krabbennebels im Jahr 1054.

Der Nebel hat einen Durchmesser von rund 10 Lichtjahren. Er dehnt sich noch immer mit einer Geschwindigkeit von etwa 1.500 Kilometern pro Sekunde aus. Ihr könnt diese Ausdehnung erkennen. Vergleicht dafür diese scharfen Bilder der dynamischen, zerbrochenen Filamente des Krabbennebels. Das Hubble-Weltraumteleskop hat sie im Jahr 2005 im sichtbaren Licht aufgenommen. Die Aufnahme des James-Webb-Weltraumteleskops im Infrarotlicht stammt aus dem Jahr 2023.

Dieses kosmische Krustentier befindet sich etwa 6500 Lichtjahre von uns entfernt in Richtung des Sternbilds Stier.

Zur Originalseite

Der junge Sternhaufen NGC 346

Das Bild des Weltraumteleskops Webb zeigt einen Sternhaufen aus massereichen Sternen in der Kleinen Magellanschen Wolke. Im Bild sind auch viele lose Sterne und Emissionsnebel verteilt.

ForschungNASA, ESA, CSA, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA); Bearbeitung – Alyssa Pagan (STScI), Nolan Habel (USRA), Laura Lenkić (USRA), Laurie E. U. Chu (NASA Ames)

Der massereichste junge Sternhaufen in der Kleinen Magellanschen Wolke ist NGC 346. Er ist rund 210.000 Lichtjahre entfernt und in das größte Sternbildungsgebiet unserer kleinen Begleitgalaxie eingebettet.

Die massereichen Sterne von NGC 346 sind zwar kurzlebig, aber äußerst energiereich. Ihre Winde und Strahlung formen die Ränder der staubigen Molekülwolke und lösen dort weitere Sternbildung aus. Das Sternentstehungsgebiet enthält anscheinend zudem eine große Zahl junger Sterne. Diese sind gerade einmal 3 bis 5 Millionen Jahre alt. Sie haben noch nicht damit begonnen, Wasserstoff in ihren Kernen zu fusionieren. Diese jungen Sterne liegen über den eingebetteten Sternhaufen verstreut.

Die spektakuläre Infrarotaufnahme von NGC 346 stammt von der NIRCam am James-Webb-Weltraumteleskop. Die Emissionen in der Sternbildungsregion leuchten rosa und orangefarben. Sie stammen von atomarem Wasserstoff, der durch die energiereiche Strahlung der massereichen Sterne ionisiert wurde, sowie von molekularem Wasserstoff und Staub. Webbs gestochen scharfes Bild des jungen Sternentstehungsgebiets ist in der Entfernung der Kleinen Magellanschen Wolke 240 Lichtjahre breit.

Zur Originalseite

Webb zeigt eine Galaxie, die eine Galaxie bricht

Eine elliptische hell leuchtende Galaxie ist von einem verzerrt wirkenden Spiralgalaxie in blauen und roten Farbtönen umgeben.

Bildcredit: ESA/Webb, NASA und CSA, G. Mahler

Ist das eine Galaxie oder sind es zwei? Auch wenn es wie eine scheint, sind es zwei. Ein möglicher Grund dafür: Eine kleine Galaxie stößt mit einer größeren zusammen und landet in deren Zentrum.

In diesem Bild seht ihr etwas Selteneres. Hier ist die zentrale helle, elliptische Galaxie viel näher als die blau und rot gefärbte Spiralgalaxie um sie herum. Das kann passieren, wenn nahe und ferne Galaxien genau auf einer Linie stehen. Dann kann die Schwerkraft der nahen Galaxie das Licht der fernen Galaxie um sich herum biegen. Dieses Phänomen heißt Gravitationslinse.

Das James-Webb-Weltraumteleskop hat die doppelte Galaxie aufgenommen. Das Bild zeigt einen vollständigen Einstein-Ring und viele Details in beiden Galaxien. Solche Galaxien mit Gravitationslinsen liefern neue Informationen: Zum einen über die Verteilung der Masse in der Galaxie im Vordergrund und zum anderen über die Verteilung der Helligkeit der Galaxie im Hintergrund.

Zur Originalseite

Webb zeigt den planetarischen Nebel NGC 1514

Der planetarische Nebel NGC 1514 im Sternbild Stier ist in Infrarotlicht sanduhrförmig. In der Mitte leuchtet er rot. Zwei Ringe sind anscheinend die Wülste an den Enden eines Zylinders, den wir schräg von oben sehen.

Bildcredit: NASA, ESA, CSA, M. E. Ressler (JPL) et al.; Bearbeitung: Judy Schmidt

Was passiert, wenn einem Stern der Kernbrennstoff ausgeht? Bei Sternen wie unserer Sonne verdichtet sich das Zentrum zu einem Weißen Zwerg. Währenddessen wird die äußere Atmosphäre ins All ausgestoßen. Sie erscheint als planetarischer Nebel.

Die abgestoßene äußere Atmosphäre des planetarischen Nebels NGC 1514 ist anscheinend ein Durcheinander aus Blasen – wenn man sie in sichtbarem Licht betrachtet. Doch diese Ansicht des Weltraumteleskops James Webb in Infrarot erzählt eine andere Geschichte. In diesem Licht hat der Nebel eine ausgeprägte Sanduhrform, die als Zylinder interpretiert wird. Wir blicken entlang der Diagonale darauf.

In der Mitte des Nebels erkennt ihr bei genauem Hinsehen auch einen hellen Zentralstern. Er gehört wahrscheinlich zu einem Doppelsternsystem. Weitere Beobachtungen zeigen vielleicht besser, wie sich dieser Nebel entwickelt und wie die Zentralsterne zusammenwirken, um die Zylinder und Blasen zu erzeugen, die wir sehen.

Springe durchs Universum: APOD-Zufallsgenerator

Zur Originalseite

MeerKAT zeigt das galaktische Zentrum in Radio

Falschfarbenbild in Gelb- und Blautönen vom galaktischen Zentrum im Radiobereich. Verschiedene Wolken, Blasen und Fäden lassen sich erkennen.

Bildcredit: NASA, ESA, CSA, STScI, SARAO, S. Crowe (UVA), J. Bally (CU), R. Fedriani (IAA-CSIC), I. Heywood (Oxford)

Was geht im Zentrum unserer Galaxie vor sich? Mit optischen Teleskopen ist das schwer zu beurteilen. Denn Staub zwischen den Sternen verschluckt das sichtbare Licht. Bei anderen Wellenlängen wie im Radiobereich kann man das galaktische Zentrum beobachten. Dann ist es eine interessante und aktive Region.

Dieses Bild zeigt das Zentrum unserer Milchstraße. MeerKAT, eine Anlage aus 64 Radioteleskopen in Südafrika, hat es aufgenommen. Es ist so breit wie vier Vollmonde am Himmel (2 Grad). Dank langer Belichtungszeit zeigt es viele Details.

Ihr könnt viele bekannte Quellen klar und detailliert erkennen. Viele tragen das Präfix „Sgr“. Der Grund: Das galaktische Zentrum befindet sich in Richtung des Sternbilds Schütze (Sagittarius).

Im Zentrum unserer Galaxie liegt Sgr A, in der sich das zentrale, extrem massereiche Schwarze Loch der Milchstraße befindet. Andere Radioquellen im Bild sind nicht so gut erforscht. Dazu zählt der Bogen links von Sgr A und zahlreiche fadenartige Strukturen.

Das James-Webb-Weltraumteleskop hat kürzlich einen kleinen Himmelsbereich beobachtet. Damit sollen die Auswirkungen von Magnetfeldern auf die Sternentstehung untersucht werden. Ihr seht das Bild der Infrarotkamera im eingefügten Bild rechts oben.

Zur Originalseite

Webb zeigt den interstellaren Strahl HH 49

Eine Gaswolke türmt sich diagonal im Bild auf. Ihre äußere Hülle ist rot leuchtend dargestellt.An ihrer Spitze befindet sich eine Spiralgalaxie, die jedoch weit hinter der Wolke liegt.

Bildcredit: NASA, ESA, CSA, STScI, JWST

Was befindet sich am Ende dieses interstellaren Jets? Betrachten wir zunächst den Strahl selber: Er wird von einem Sternsystem ausgestoßen, das sich gerade erst bildet, und ist als Herbig-Haro 49 (HH 49) katalogisiert. Das Sternsystem, das diesen Jet ausstößt, ist nicht sichtbar – es befindet sich rechts unten außerhalb des Bildes.

Die komplexe, spitz zulaufende Struktur, die auf diesem Infrarotbild vom James Webb Space Telescope (JWST) gezeigt wird, beinhaltet noch einen weiteren Jet, der als HH 50 katalogisiert ist. Die schnellen Jet-Partikel treffen auf das umgebende interstellare Gas und bilden Stoßwellen, die im Infrarotlicht hell leuchten. Sie sind hier als rotbraune Strukturen dargestellt.

Das JWST-Bild hat auch das Rätsel um das ungewöhnliche Objekt an der Spitze von HH 49 gelöst: Es handelt sich um eine weit entfernte Spiralgalaxie. Das blaue Zentrum besteht daher nicht aus einem Stern, sondern aus vielen, und die umgebenden Kreisringe sind eigentlich Spiralarme.

Durchs Universum springen: APOD-Zufallsgenerator

Zur Originalseite

Webb zeigt Jupiter mit Ring in Infrarot

Jupiter im Infraroten, aufgenommen vom James-Webb-Weltraumteleskop. Zu sehen sind Wolken, der Große Rote Fleck, der hell erscheint, und ein auffälliger Ring um den Riesenplaneten.

Bildcredit: NASA, ESA, CSA, STScI; Bearbeitung und Lizenz: Judy Schmidt

Warum hat Jupiter Ringe? Als 1979 die NASA-Raumsonde Voyager 1 am Planeten vorbeiflog, entdeckte sie seinen Hauptring. Sein Ursprung blieb damals ein Rätsel.

Die NASA-Sonde Galileo umrundete den Jupiter von 1995 bis 2003. Ihre Daten zeigten, dass dieser Ring durch Meteoriteneinschläge auf kleinen nahe gelegenen Monden entstanden ist. Trifft ein kleiner Meteoroid beispielsweise auf den winzigen Metis, dann bohrt er sich in den Mond. Dabei verdampft und schleudert er Staub und Schmutz in eine Umlaufbahn um den Jupiter.

Das James-Webb-Weltraumteleskop hat dieses Bild von Jupiter im Infraroten aufgenommen. Es zeigt neben Jupiter und seinen Wolken auch seinen Ring. Im Bild sehr ihr außerdem den Großen Roten Fleck (GRF) – vergleichsweise hell auf der rechten Seite. Auch den großen Mond Europa könnt ihr links in der Mitte des Lichtkreuzes erkennen. Seinen Schatten findet ihr neben dem GRF. Einige Details auf dem Bild sind noch nicht vollständig erforscht. Dazu zählt die scheinbar getrennte Wolkenschicht am rechten Rand des Planeten.

Zur Originalseite