Eisriese Neptun mit Ringen

Links oben leuchtet ein helles Licht mit ausgeprägten bläulichen Zacken, es ist der Neptunmond Triton. Rechts unter der Mitte ruht Neptun mit Ringen und hellen Wolkenstrukturen. Rund um Pluto sind weitere Neptunmonde angeordnet.

Bildcredit: NASA, ESA, CSA, STScI, NIRCam

Mitten in diesem scharfen Bild ruht der Eisriese Neptun mit seinen Ringen. Es wurde mit dem Weltraumteleskop James Webb im nahen Infrarot aufgenommen. Die dämmrige, ferne Welt ist der am weitesten von der Sonne entfernte Planet, er ist etwa 30-mal weiter entfernt als der Planet Erde.

Die dunkle, geisterhafte Erscheinung des Planeten auf dieser Webb-Aufnahme entsteht durch das Methan in der Atmosphäre, das Infrarotlicht aufnimmt. Wolken in großer Höhe, die über den größten Teil des absorbierenden Methans auf Neptun reichen, sind im Bild deutlich erkennbar.

Triton ist Neptuns größter Mond, er ist mit gefrorenem Stickstoff überzogen und strahlt im reflektierten Sonnenlicht heller als Neptun. Er leuchtet links oben und ist von den charakteristischen Beugungsspitzen des Webb-Teleskops umgeben. Zusammen mit Triton sind hier sieben von Neptuns 14 bekannten Monden erkennbar.

Neptuns blasse Ringe treten auf diesem weltraumbasierten planetaren Porträt markant hervor. Die Details des komplexen Ringsystems sind hier erstmals wieder zu sehen, seit Neptun im August 1989 von der Raumsonde Voyager 2 besucht wurde.

Zur Originalseite

Webb zeigt den Ringnebel

In der MItte ist der bekannte Ringnebel in Regenbogenfarben abgebildet. Rundherum sind auffällige Strähnen erkennbar, die an Wimpern erinnern.

Bildcredit: NASA, ESA, CSA, JWST; Bearbeitung: Zi Yang Kong

Der Ringnebel (M57) ist komplexer, als er durch ein kleines Teleskop wirkt. Der gut sichtbare zentrale Ring ist etwa ein Lichtjahr groß, doch diese beachtliche Aufnahme des Weltraumteleskops James Webb erforscht diesen beliebten Nebel mit einer detailreichen Aufnahme in Infrarotlicht.

Strähnen aus Gas, die wie Wimpern um ein kosmisches Auge aussehen, sind auf diesem digital verstärkten Bild in zugewiesenen Farben um den Ring angeordnet. Diese langen Fasern entstehen vielleicht, indem Knoten aus dichtem Gas im Ring energiereiches Licht aus dem Inneren abschatten.

Der Ringnebel ist ein länglicher planetarischer Nebel, eine Art Gaswolke, die entsteht, wenn ein sonnenähnlicher Stern seine äußere Atmosphäre abstößt und ein weißer Zwergstern wird. Das zentrale Oval im Ringnebel ist etwa 2500 Lichtjahre entfernt und liegt im musischen Sternbild Lyra.

Zur Originalseite

Die Sombrerogalaxie in Infrarot

Mitten im Bild schwebt ein rosafarbener Ring um eine blau leuchtende Wolke.

Bildcredit: R. Kennicutt (Steward Obs.) et al., SSC, JPL, Caltech, NASA

Dieser schwebende Ring ist so groß wie eine Galaxie. Eigentlich ist er eine Galaxie – oder zumindest ein Teil davon: Es ist die fotogene Sombrerogalaxie, eine der größten Galaxien im nahen Virgo-Galaxienhaufen. Das dunkle Band aus Staub, das in sichtbarem Licht den mittleren Abschnitt der Sombrerogalaxie verdeckt, strahlt hell im Infrarotlicht.

Dieses digital geschärfte Bild wurde mit dem Weltraumteleskop Spitzer im Orbit aufgenommen. Es zeigt das infrarote Leuchten, das in Falschfarben über ein Bild des Weltraumteleskops Hubble in sichtbarem Licht gelegt wurde.

Die Sombrerogalaxie ist auch als M104 bekannt. Sie ist etwa 50.000 Lichtjahre groß und 28 Millionen Lichtjahre entfernt. M104 seht ihr mit einem kleinen Teleskop im Sternbild Jungfrau.

Zur Originalseite

Junge Sterne, stellare Strahlen

Mitten im sternbedeckten Bild leuchtet ein rötlicher Nebel, rechts darunter leuchten helle Sterne mit je 6 Zacken, einige weitere Sterne im Bild haben ebenfalls 6 Zacken.

Bildcredit und Bildrechte: NASA, ESA, CSA, Bearbeitung: Joseph DePasquale (STScI)

Molekulares Gas, das mit hoher Geschwindigkeit von einem Paar aktiver junger Sterne ausströmt, leuchten im Infrarotlicht. Sie sind auf diesem Bild, das mit der NIRcam des Weltraumteleskops James Webb aufgenommen wurde, dargestellt.

Die jungen Sterne sind als HH (Herbig-Haro) 46/47 katalogisiert. Sie befinden sich in einem dunklen Nebel, der in sichtbarem Licht großteils undurchsichtig ist. Das Sternenpaar ist auf dem NIRcam-Bild in der Mitte der markanten rötlichen Beugungsspitzen. Ihre energiereichen Sternströme sind fast ein Lichtjahr lang und wühlen sich in das dunkle interstellare Material.

Dieses junge Sternsystem ist nur etwa 1140 Lichtjahre entfernt, also relativ nahe und liegt im nautischen Sternbild Schiffssegel. Es eignet sich bestens für die Erforschung mit Webbs Infrarotausrüstung.

Zur Originalseite

Der Adlernebel mit heißen Röntgensternen

Säulen aus Gas und dunklem Staub verlaufen diagonal von links unten nach rechts oben. Leuchtstarke Röntgenquellen sind als helle Punkte um das Bild herum eingeblendet. Infraroter Staub leuchtet hinter den Säulen.

Bildcredit: Röntgen: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; Infrarot: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Sichtbares Licht: Hubble: NASA/ESA/STScI, ESO; Bildbearbeitung: L. Frattare, J. Major, N. Wolk und K. Arcand

Wie sehen die berühmten Sternsäulen im Adlernebel in Röntgenlicht aus? Um das herauszufinden, spähte das NASA-Röntgenobservatorium Chandra im Orbit in und durch diese interstellaren Berge der Sternbildung. Es zeigte sich, dass die Staubsäulen selbst nicht viel Röntgenlicht abstrahlt, doch es kamen viele kleine, aber helle Röntgenquellen zum Vorschein. Sie sind als helle, rötliche Punkte abgebildet.

Das Bild ist ein Komposit aus Aufnahmen von Chandra (Röntgen), XMM (Röntgen), JWST (Infrarot), Spitzer (Infrarot), Hubble (visuell) und dem VLT (visuell). Welche Sterne diese Röntgenstrahlen erzeugen, wird weiterhin erforscht, doch einige sind vermutlich heiße, kürzlich entstandene Sterne mit geringer Masse, andere dagegen heiße, ältere Sterne mit großer Masse.

Die heißen Röntgensterne sind im Bild verteilt. Schon früher wurden sie als verdampfende gasförmige Globulen (EGGS) erkannt. In sichtbarem Licht sind sie unsichtbar, und derzeit sind sie auch nicht heiß genug, um Röntgenlicht abzustrahlen.

Zur Originalseite

Das dunkle Seepferdchen in Kepheus

Ein Sternenfeld ist voller düsterer Staubwolken, in der Mitte verläuft eine schmale, dunkle Wolke in Form eines Seepferdchens.

Bildcredit und Bildrechte: Jeff Herman

Der Seepferdchennebel ist Lichtjahre lang. Seine markante Form erscheint als Silhouette vor einem reichhaltigen, funkelnden Hintergrund aus Sternen. Die staubhaltigen, undurchsichtigen Wolken im königlichen Sternbild Kepheus sind Teil einer etwa 1200 Lichtjahre entfernten Molekülwolke in der Milchstraße. Sie ist auch als Barnard 150 (B150) gelistet und zählen zu den 182 dunklen Markierungen am Himmel, die der Astronom E. E. Barnard Anfang des 20. Jahrhunderts katalogisierte.

Im Inneren entstehen ganze Gruppen an Sternen mit geringer Masse, doch ihre kollabierenden Kerne sind nur in langen Infrarotwellenlängen sichtbar. Die farbigen Sterne in Kepheus ergänzen diese hübsche galaktische Himmelslandschaf.

Zur Originalseite

Titan sehen

Rund um ein Bild des Saturnmondes Titan mit gelber, glatter Atmosphäre sind 6 Bilder angeordnet, auf denen die Oberfläche von Titan zu sehen ist.

Bildcredit: VIMS-Team, U. Arizona, U. Nantes, ESA, NASA

Saturns größter Mond Titan ist von einer dichten Atmosphäre verhüllt, daher ist es wirklich schwierig, ihn zu sehen. Kleine Teilchen, die in der oberen Atmosphäre verteilt sind, bilden einen fast undurchdringlichen Dunst, der Licht in sichtbaren Wellenlängen stark streut und Titans Oberfläche vor neugierigen Augen versteckt. Doch in Infrarotwellenlängen kann Titans Oberfläche abgebildet werden. Diese werden schwächer gestreut und die atmosphärische Absorption reduziert.

Rund um das Titan-Bild in sichtbarem Licht (Mitte) sind einige der bisher klarsten globalen Infrarotansichten des interessanten Mondes angeordnet. Die sechs Bildfelder in Falschfarben sind Infrarotbilddaten, die im Laufe von 13 Jahren mit dem visuellen und infraroten Kartierungs-Spektrometer (VIMS) an Bord der Raumsonde Cassini gewonnen und einheitlich bearbeitet wurden. Die Raumsonde kreiste von 2004 bis 2017 um Saturn. Sie bieten einen interessanten Vergleich mit Cassinis Ansicht in sichtbarem Licht.

Im Jahr 2027 soll die revolutionäre Rotorflugzeugmission Dragonfly der NASA zu Titan aufbrechen.

Zur Originalseite

Sieben staubige Schwestern in Infrarot

Das Sichtfeld mit faserartigem Staub ist in verschiedene Abschnitte in unterschiedlichen Farben eingeteilt. Im Hintergrund leuchten Sterne.

Bildcredit: NASA, WISE, IRSA, Bearbeitung und Bildrechte: Francesco Antonucci

Ist das wirklich der berühmte Sternhaufen der Plejaden? Sie sind für ihre kultigen blauen Sterne bekannt, doch hier sind die Plejaden in Infrarotlicht abgebildet, sodass der umgebende Staub die Sterne überstrahlt. Drei Infrarotfarben wurden in visuelle Farben umgewandelt (R=24, G=12, B=4.6 Mikrometer). Die Basisbilder stammen von der NASA-Raumsonde WISE zur Weitwinkel-Durchmusterung in Infrarot im Erdorbit.

Der Sternhaufen der Plejaden ist als M45 katalogisiert. Er wird landläufig Sieben Schwestern genannt und liegt zufällig in einer vorbeiziehenden Staubwolke. Das Licht und die Winde der massereichen Sterne der Plejaden stoßen bevorzugt kleinere Staubteilchen ab. Dadurch wird der Staub – wie man sieht – zu Fasern geschichtet.

Die Plejaden im Sternbild Stier (Taurus) sind ungefähr 450 Lichtjahre entfernt. In dieser Entfernung umfasst das Bild etwa 20 Lichtjahre.

Zur Originalseite