Herschel zeigt den Seelennebel in Infrarot

Der Seelennebel im Sternbild Kassiopeia wirkt hier fremd, weil das Bild in Infrarot aufgenommen wurde. Eine blau schimmernde Höhlung ist von dichten rotbraunen Wolken umgeben.

Bildcredit und Lizenz: ESA, Weltraumteleskop Herschel, NASA, JPL-Caltech

In der Seele der Königin von Aithiopia entstehen Sterne. Genauer gesagt liegt im Sternbild Kassiopeia eine große Region mit Sternbildung. Sie wird Seelennebel genannt. In der griechischen Mythologie ist sie die eitle Gattin eines Königs, der vor langer Zeit die Länder am oberen Nil regierte.

Im Seelennebel befinden sich mehrere offene Sternhaufen. Auch eine große Radioquelle befindet sich im Nebel. Sie ist als W5 bekannt. Riesige hohle Blasen wurden von den Winden junger, massereicher Sterne geformt.

Der Seelennebel ist etwa 6500 Lichtjahre entfernt und ungefähr 100 Lichtjahre groß. Meist wird er zusammen mit seinem himmlischen Nachbarn abgebildet. Es ist der Herznebel (IC 1805). Letzten Monat nahm das Weltraumteleskop Herschel dieses detailreiche Bild in mehreren Spektralbereichen von Infrarot auf.

Zur Originalseite

Der massereiche Stern G79.29+0.46 stößt Hüllen ab

Zwischen Staubnebeln leuchtet oben ein grüner Stern, der von roten Staubhüllen umgeben ist. Er ist als G79.29+0.46 katalogisiert.

Bildcredit: NASA, Weltraumteleskop Spitzer, WISE; Bearbeitung und Lizenz: Judy Schmidt

So unbeständige Sterne findet man ziemlich selten. Hier wurde der massereiche Stern G79.29+0.46 fotografiert. Er ist rechts über der Mitte in Staubwolken gehüllt. G79.29+0.46 ist einer von weniger als 100 leuchtstarken blauen veränderlichen Sternen (LBVs), die wir in unserer Galaxis kennen. LBVs stoßen Hüllen aus Gas ab. Sie könnten sogar eine Jupitermasse in 100 Jahren verlieren. Der Stern selbst ist hell und blau, aber von Staub umhüllt. Daher sieht man ihn nicht in sichtbarem Licht.

Dieses farbig kartierte Infrarotbild entstand aus Bildern der NASA-Weltraumteleskope Spitzer und Wide-Field Infrared Survey Explorer (WISE). Der vergehende Stern ist grün dargestellt und von roten Hüllen umgeben. G79.29+0.46 liegt in der Cygnus-XRegion unserer Galaxis, wo Sterne entstehen. Warum G79.29+0.46 so unbeständig ist, wie lange er in der LBV-Phase bleibt und wann er als Supernova explodiert, wissen wir nicht.

Zur Originalseite

Himmlisches Feuerwerk: In den Sternhaufen Westerlund 2

Credit der Visualisierung: NASA, ESA, Hubble, J. Anderson et al. (STScI); Danksagung an das Hubble-Vermächtnisteam (STScI/AURA), A. Nota (ESA/STScI), das Westerlund-2-Wissenschaftsteam und die ESO

Stell dir vor, du könntest direkt in einen Haufen fliegen, in dem Sterne entstehen. Dieses Video zeigt so eine Visualisierung in Zeitraffer. Es entstand aus 3-D-Computermodellen der Region um den Sternhaufen Westerlund 2. Die Modelle entstanden aus Bildern des Weltraumteleskops Hubble in sichtbarem und infrarotem Licht.

Westerlund 2 ist etwa 10 Lichtjahre groß und 20.000 Lichtjahre entfernt. Er liegt im Sternbild Schiffskiel (Carina). Zu Beginn der anschaulichen Animation füllt der größere Nebel Gum 29 das Bild. In der Mitte ist ein junger Haufen aus hellen Sternen. Während ihr euch dem Haufen nähert, zischen Sterne vorbei.

Bald schwenkt das imaginäre Schiff, und ihr fliegt über Säulen aus interstellarem Gas und Staub. Sie sind Lichtjahre lang. Starke Winde und die Strahlung massereicher junger Sterne zerstören alles außer den dichtesten Staubklumpen in der Nähe. In den Schatten der Klumpen bleiben Säulen zurück. Viele davon zeigen zum Zentrum des Haufens.

Zuletzt fliegt ihr zur Oberseite des Sternhaufens. Dort seht ihr Hunderte der massereichsten Sterne, die wir kennen.

Zur Originalseite

N6946-BH1: Der Fall eines fehlenden Sterns

Das Bild ist zweigeteilt. Links im älteren Bild ist ein heller Stern erkennbar, der im rechten, neueren Bildteil verschwunden ist. Die Stelle ist jeweils mit einem blauen Kreis markiert.

Bildcredit: NASA, ESA, Hubble, C. Kochanek (OSU)

Was passiert mit dem Riesenstern N6946-BH1? Vor ein paar Jahren war er da. Hubble fotografierte ihn. Nun ist dort nur noch ein blasses Leuchten. Noch seltsamer ist, dass es keine helle Supernova gab, obwohl der Stern einige Monate lang deutlich heller wurde.

N6946-BH1 enthält etwa 25 Sonnenmassen. Die führende Theorie besagt, dass die starke Gravitation bei seinem finalen stürmischen Kampf den Großteil des Sterns zusammenhielt. Danach versank ein Großteil des Sterns in einem hausgemachten Schwarzen Loch. Falls dem so ist, entstand wohl aus allem, was außerhalb des Schwarzen Lochs übrig blieb, eine Akkretionsscheibe. Sie strahlt vergleichsweise blasses Infrarotlicht ab und wirbelt herum, ehe sie hineinfällt.

Falls sich diese finale Entwicklung am Ende bei anderen Sternen bestätigt, wäre das ein direkter Hinweis, dass ein sehr massereicher Stern seine Existenz eher mit einem Wimmern als mit einem Knall beendet.

Zur Originalseite

Sternbildung im Kaulquappennebel

Eine orangefarbene Höhlung ist von helleren Nebeln umgeben. In der Mitte sind zwei kaulquappenförmige Wolken.

Bildcredit: WISE, IRSA, NASA; Bearbeitung und Bildrechte: Francesco Antonucci

Im Kaulquappennebel IC 410 herrscht ein Tumult an Sternbildung. IC 410 ist ein staubiger Emissionsnebel. Er ist etwa 12.000 Lichtjahre entfernt und liegt im nördlichen Sternbild Fuhrmann (Auriga). Die Wolke aus leuchtendem Gas ist mehr als 100 Lichtjahre groß. Sie wird von den Sternwinden und der Strahlung des eingebetteten offenen Sternhaufens NGC 1893 in Form gebracht.

Die hellen, neu entstandenen Sterne im Haufen sind vor etwa 4 Millionen Jahren in der interstellaren Wolke entstanden. Sie sind überall im Nebel verteilt. Mitten im Bild fallen zwei relativ dichte Materiebänder auf. Sie schlängeln sich von den Zentralregionen des Nebels weg. Diese kosmischen Kaulquappen sind etwa 10 Lichtjahre lang. Darin findet womöglich Sternbildung statt. Das Bild wurde vom Satelliten WISE der NASA im Infrarotlicht aufgenommen. WISE führt eine Weitwinkel-Infrarot-Durchmusterung durch.

Zur Originalseite

Der Ausreißerstern Zeta Oph

Der Stern in der Mitte leuchtet blau und schiebt eine gebogene Staubfront nach links.

NASA, JPL-Caltech, Weltraumteleskop Spitzer

Der Ausreißerstern Zeta Ophiuchi schiebt eine gewölbte interstellare Bugwelle vor sich her, wie ein Schiff, das durch kosmische Meere pflügt. Sie ist auf diesem atemberaubenden Infrarotporträt zu sehen. Der bläuliche Stern Zeta Oph ist nahe der Bildmitte in Falschfarben dargestellt. Er hat etwa 20 Sonnenmassen und wandert mit 24 Kilometern pro Sekunde nach links. Sein starker Sternenwind eilt ihm voraus. Er komprimiert und erhitzt die staubige interstellare Materie und formt die gekrümmte Stoßfront.

Wie kam der Stern in Bewegung? Zeta Oph war wahrscheinlich Teil eines Doppelsternsystems mit einem massereicheren und daher kurzlebigeren Begleitstern. Als der Begleiter als Supernova explodierte und katastrophal an Masse verlor, wurde Zeta Oph aus dem System geschleudert. Zeta Oph ist etwa 460 Lichtjahre entfernt und 65.000 Mal lichtstärker als die Sonne. Er wäre einer der helleren Sterne am Himmel, wenn er nicht von Staub verdunkelt wäre. Das Bild ist 1,5 Grad breit. Das entspricht in der geschätzten Entfernung von Zeta Ophiuchi zirka 12 Lichtjahren.

Zur Originalseite

Cassini zeigt Saturn in Infrarot

Die Raumsonde Cassini blickt von schräg oben auf den Planeten Saturn, der fast das ganze Bild füllt. Oben und unten sind die Ringe zu sehen. Am Nordpol von Saturn breitet sich das berühmte Sechseck aus.

Bildcredit: NASA, JPL-Caltech, SSI; Bearbeitung: Maksim Kakitsev

Viele Details auf Saturn treten im Infrarotlicht klar hervor. Wolkenbänder haben tolle Strukturen. Dazu zählen auch ausgedehnte Stürme. In Infrarot ist auch das ungewöhnliche sechseckige Wolkenmuster um Saturns Nordpol ziemlich auffällig. Jede Seite des dunklen Sechsecks ist etwa so breit wie die Erde.

Niemand ahnte von der Existenz des Sechsecks. Sein Ursprung und der Grund für seine Stabilität werden weiterhin erforscht. Saturns berühmte Ringe kreisen um den Planeten und werfen Schatten unter dem Äquator.

Das Bild wurde erst kürzlich bearbeitet. Doch die robotische Raumsonde Cassini fotografierte es schon 2014 in mehreren Wellenlängen von Infrarot. Im September endet die Mission Cassini dramatisch. Dann wird die Raumsonde auf Tauchgang in den Ringriesen gelenkt.

Zur Originalseite

NGC 602 und dahinter

Der Sternhaufen NGC 602 ist von malerischen Staubwolken umgeben, die am Rand zu dichten Graten komprimiert wurden.

Bildcredit: Röntgen: Chandra: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Optisch: Hubble: NASA/STScI; Infrarot: Spitzer: NASA/JPL-Caltech

Die Kleine Magellansche Wolke ist eine Begleitgalaxie der Milchstraße. Sie ist etwa 200.000 Lichtjahre von uns entfernt. An ihrem Rand liegt der 5 Millionen Jahre junge Sternhaufen NGC 602. Das faszinierende Hubble-Bild zeigt NGC 602, der von dem Gas und Staub umgeben ist, in dem er entstand.

Bilder im Röntgenlicht von Chandra und in Infrarot von Spitzer ergänzen die Ansicht. Die fantastischen Grate und zurückgefegten Formen sind klare Hinweise, dass die energiereiche Strahlung und die Stoßwellen der massereichen jungen Sterne in NGC 602 die staubige Materie erodiert haben. Dabei lösten sie eine Serie an Sternbildung aus, die vom Zentrum des Sternhaufens ausgeht.

In der Distanz der Kleinen Magellanschen Wolke ist das Bild etwa 200 Lichtjahre breit. Doch die scharfe vielfarbige Ansicht zeigt auch eine reizende Auswahl an Galaxien, die dahinter liegen. Sie sind Hunderte Millionen Lichtjahre oder mehr von NGC 602 entfernt.

Zur Originalseite