Wirbelstürme auf Jupiters Nordpol

Jupiters Nordpol ist in Infrarotlicht abgebildet. Um einen dunklen Bereich sind mehrere dunkle Wirbel angeordnet.

Bildcredit: NASA, JPL-Caltech, SwRI, ASI, INAF, JIRAM

Diese Ansicht zeigt die Wirbelstürme am Nordpol von Jupiter. Sie entstand aus den Daten von Junos Instrument Jovian Infrared Auroral Mapper (JIRAM, Jupiter-Polarlicht-Kartierung in Infrarot). Beobachtungen in Infrarot messen die Wärmestrahlung, die von Jupiters Wolkenoberflächen ausgeht. Diese Messungen sind nicht auf die Halbkugel beschränkt, die vom Sonnenlicht beleuchtet werden.

Das Bild zeigt acht zyklonartige Elemente. Sie sind um einen Wirbelsturm angeordnet, der ungefähr 4000 Kilometer groß ist. Er liegt neben dem geografischen Nordpol des Riesenplaneten. Ähnliche Daten zeigen einen Wirbelsturm bei Jupiters Südpol mit fünf zirkumpolaren Zyklonen. Die Wirbelstürme am Südpol sind etwas größer als ihre nördlichen Artgenossen.

Daten von Cassini zeigten, dass Nord- und Südpol des Gasriesen Saturn ein einziges Wirbelsturmsystem besitzen.

Zur Originalseite

Hubble zeigt Jupiter in Infrarot

Jupiter ist hier in seltsamen Farben abgebildet. Die Wolken, die normalerweise beige oder braun gefärbt sind, leuchten hier blau oder rosarot. Der Rote Fleck ist zartrosa, die Pole leuchten magentafarben. Das Bild zeigt Jupiter in Infrarotlicht.

Bildcredit: NASA, ESA, Hubble; Daten: Michael Wong (UC Berkeley) et al.; Bearbeitung und Lizenz: Judy Schmidt

Jupiter sieht im Infrarotlicht ein bisschen anders aus. Das Weltraumteleskop Hubble bildet den ganzen jovianischen Riesen regelmäßig ab. So will man Jupiters Wolkenbewegungen besser verstehen. Die Aufnahmen sollen außerdem die robotische Raumsonde Juno der NASA unterstützen.

Die Farben, in denen Jupiter beobachtet wird, reichen über den normalen Sehbereich von Menschen hinaus. Sie umfassen auch ultraviolettes und infrarotes Licht. Dieses Bild entstand 2016. Darauf wurden drei Bänder des nahen Infrarotlichtes digital zu einem farbkartiertes Bild kombiniert. Jupiter wirkt in Infrarot anders, teils weil das Sonnenlicht anders reflektiert wird. Das verleiht unterschiedlichen Wolkenhöhen und Breitengraden eine unstimmige Helligkeit.

Viele Strukturen auf Jupiter sind vertraut. Dazu gehören die hellen Zonen und dunklen Gürtel um den Planeten nahe am Äquator. Vertraut sind auch der große Rote Fleck links unten und die Sturmsysteme, die wie Perlenketten südlich vom Roten Fleck verlaufen. Die Pole leuchten, weil dort geladene Teilchen in Jupiters Magnetosphäre Dunst in großer Höhe anregen.

Juno hat nun 10 von 12 geplanten wissenschaftlichen Umkreisungen von Jupiter vollendet. Die Sonde zeichnet weiterhin Daten auf. Das hilft der Menschheit, nicht nur Jupiters Wetter zu verstehen, sondern auch das, was unter Jupiters dicken Wolken liegt.

Zur Originalseite

Venus bei Nacht in Infrarot von Akatsuki

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: JAXA, ISAS, DARTS; Bearbeitung und Bildrechte: Damia Bouic

Beschreibung: Warum unterscheidet sich die Venus so stark von der Erde? Um das herauszufinden, startete Japan die Roboterraumsonde Akatsuki, die nach einer ungeplanten fünfjährigen Abenteuerreise um das innere Sonnensystem Ende 2015 in den Venusorbit eintrat. Akatsuki hatte zwar ihre geplante Lebenszeit überschritten, doch die Raumsonde und ihre Instrumente funktionierten so gut, dass ein Großteil ihrer ursprünglichen Mission wieder hergestellt wurde.

Die Instrumente von Akatsuki, die auch als Venus Climate Orbiter bekannt ist, erforschten Unbekanntes über den Schwesterplaneten der Erde, etwa ob die Vulkane immer noch aktiv sind, ob es in der dichten Atmosphäre Blitze gibt, und warum die Windgeschwindigkeiten viel höher sind als die Rotationsgeschwindigkeit des Planeten.

Auf diesem Bild, das mit Akatsukis IR2-Kamera fotografiert wurde, weist die Nachtseite der Venus ein schartiges Äquatorialband aus hohen, dunklen Wolken auf, die Infrarotlicht von heißeren Schichten absorbieren, die tiefer in der Venusatmosphäre liegen. Der helle orangeschwarze Streifen rechts oben ist ein falsches digitales Artefakt, das einen Teil der viel helleren Tagseite der Venus bedeckt. Auswertungen der Akatsuki-Bilder und -Daten zeigten, dass die Venus einen Äquatorialstrom besitzt, ähnlich wie die Strahlströme der Erde.

Zur Originalseite

NGC 7822: Sterne und Staubsäulen in Infrot

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: WISE, IRSA, NASA; Bearbeitung und Bildrechte: Francesco Antonucci

Beschreibung: Junge Sterne leeren ihre Kinderstube in NGC 7822. Helle Ränder und komplexe Staubskulpturen im Nebel dominieren diese detailreiche Himmelslandschaft, die mit dem Satelliten Wide Field Infrared Survey Explorer (WISE) der NASA in Infrarotlicht fotografiert wurde.

NGC 7822 liegt am Rand einer riesigen Molekülwolke im nördlichen Sternbild Kepheus. Die leuchtende Sternbildungsregion ist etwa 3000 Lichtjahre entfernt. Die Energie für die atomare Lichtemission des Nebelgases stammt von der energiereichen Strahlung der heißen Sterne, deren mächtigen Winde zusammen mit ihrem Licht ebenfalls die dichteren Säulengestalten formen und erodieren. Im Inneren der Säulen könnten durch Gravitationskollaps immer noch Sterne entstehen, doch die Säulen werden erodiert, daher werden entstehende Sterne schlussendlich vom Vorrat an Sternenstoff abgeschnitten.

Dieses Feld ist in der geschätzten Entfernung von NGC 7822 etwa 40 Lichtjahre groß.

Zur Originalseite

Der Seelennebel in Infrarot von Herschel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: ESA, Weltraumteleskop Herschel, NASA, JPL-Caltech

Beschreibung: Sterne entstehen in der Seele der Königin von Aethiopia. Genauer gesagt liegt eine große Sternbildungsregion, die Seelennebel genannt wird, in Richtung des Sternbildes Kassiopeia, die in der griechischen Mythologie die eitle Gattin eines Königs ist, der vor langer Zeit Ländereien am oberen Nil regierte. Der Seelennebel enthält mehrere offene Sternhaufen, eine große Radioquelle, die als W5 bekannt ist, sowie riesige ausgehöhlte Blasen, die von den Winden junger, massereicher Sterne geformt wurden. Der Seelennebel ist etwa 6500 Lichtjahre entfernt und ungefähr 100 Lichtjahre groß. Meist wird er zusammen mit seinem himmlischen Nachbarn, dem Herznebel (IC 1805), abgebildet. Dieses eindrucksvoll detailreiche Bild wurde letzten Monat vom Weltraumteleskop Herschel in mehreren Infrarot-Spektralbereichen fotografiert.

Zur Originalseite

Sternbildung im Kaulquappennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: WISE, IRSA, NASA; Bearbeitung und Bildrechte: Francesco Antonucci

Beschreibung: Was ist das für ein Tumult im Kaulquappennebel?
Sternbildung. IC 410, eine staubige Emission im Kaulquappennebel, ist etwa 12.000 Lichtjahre entfernt im nördlichen Sternbild Fuhrmann (Auriga). Die Wolke aus leuchtendem Gas ist mehr als 100 Lichtjahre groß und wird von den Sternwinden und der Strahlung des eingebetteten offenen Sternhaufens NGC 1893 geformt. Die hellen, neu entstandenen Haufensterne, die vor etwa 4 Millionen Jahren in der interstellaren Wolke gebildet wurden, sind überall im Sterne bildenden Nebel zu sehen. Nahe der Bildmitte fallen zwei relativ dichte Materiebänder auf, die sich von den Zentralregionen des Nebels wegschlängeln. Diese kosmischen Kaulquappenformen sind etwa 10 Lichtjahre lang und mögliche Orte andauernder Sternbildung in IC 410. Dieses Bild wurde vom Weitwinkel-Infrarot-Durchmusterungserkundungssatelliten WISE der NASA im Infrarotlicht aufgenommen.

Zur Originalseite

Das Weltraumteleskop Herschel der ESA zeigt Orion

Die leuchtenden Nebelfasern im Bild sind in sichtbarem Licht dunkel. Sie wurden in Infrarot-Wellenlängen aufgenommen und sind in Falschfarben dargestellt. Die Fasern befinden sich in und um den Orionnebel.

Bildcredit und Bildrechte: ESA/Herschel/PACS/SPIRE

Das dramatische Bild späht in den Orionnebel M42. Er ist die nächstliegende große Region mit Sternbildung. Das Kompositbild in Falschfarben entstand aus Infrarot-Daten des Weltraumteleskops Herschel. Es erkundet die kosmische Wolke, die etwa 1500 Lichtjahre entfernt ist.

Kalte, dichte Fasern aus Staub leuchten hier in rötlichen Farbtönen. In sichtbaren Wellenlängen wären sie dunkel. Die Fasern sind Lichtjahre lang. Sie verweben helle Flecken, die Bereiche mit kollabierenden Protosternen anzeigen. Der hellste, bläuliche Bereich oben ist wärmerer Staub. Er wird von den heißen Sternen im Trapez-Haufen erwärmt. Die Trapezsterne liefern auch die Energie für das sichtbare Leuchten im Nebel.

Die Daten von Herschel liefern neue Hinweise, dass das UV-Licht der heißen jungen Sterne wahrscheinlich zur Entstehung von Molekülen aus Kohlenwasserstoff beiträgt. Diese Moleküle sind die Grundbausteine des Lebens. Dieses Bild von Herschel ist am Himmel etwa 3 Grad breit. Das entspricht in der Entfernung des Orionnebels etwa 80 Lichtjahren.

Zur Originalseite

Der Helixnebel in Infrarot

Mitten im dunklen Bild mit schwach leuchtenden Sternen leuchtet ein Nebel, der an ein Auge mit roter Iris erinnert.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer; Bearbeitung: Judy Schmidt

Warum leuchtet dieses kosmische Auge so rot? Wegen des Staubs. Das Bild stammt vom robotischen Weltraumteleskop Spitzer. Es zeigt den gut untersuchten Helixnebel (NGC 7293) in Infrarotlicht. Der Nebel ist etwa 700 Lichtjahre entfernt und liegt im Sternbild Wassermann. Er ist eine Hülle aus Staub und Gas um einen zentralen Weißen Zwerg. Sein Durchmesser beträgt zwei Lichtjahre.

Seit Langem gilt er als gutes Beispiel für einen planetarischen Nebel. Das ist das Endstadium in der Entwicklung eines sonnenähnlichen Sterns. Die Daten von Spitzer zeigen, dass der Zentralstern im Nebel von einem überraschend hellen Leuchten in Infrarot umgeben ist. Modelle zeigen, dass das infrarote Leuchten von einer Staub- und Trümmerwolke stammen könnte. Das nebelartige Material wurde vielleicht vor Tausenden Jahren vom Stern ausgestoßen.

Der nahe Staub entstand womöglich bei Kollisionen von Objekten, die sich in einem Speicher befinden, ähnlich wie der Kuipergürtel oder die Oortsche Wolke im Sonnensystem, aus der viele Kometen stammen. Die kometenähnlichen Körper bei einem möglichen fernen Planetensystem um den Zentralstern des Nebels hätten in diesem Fall sogar das dramatische Endstadium der Sternentwicklung überstanden.

Zur Originalseite