Die prächtige Spiralgalaxie M100

Das Zentrum der von oben sichtbaren Spiralgalaxie M100 mit markanten Spiralarmen füllt das ganze Bild.

Bildcredit: NASA, ESA, Hubble

Beschreibung: M100 ist majestätisch in einem wahrhaft kosmischen Maßstab. Sie ist eine große, prächtige Galaxie mit mehr als 100 Milliarden Sternen und zwei klar definierten, symmetrischen Spiralarmen. Insgesamt ist sie unserer Galaxis, der Milchstraße, sehr ähnlich.

M100 (auch NGC 4321) ist eines der hellsten Mitglieder des Virgo-Galaxienhaufens, sie liegt 56 Millionen Lichtjahre entfernt im Sternbild Haar der Berenike (Coma Berenices). Dieses Bild des Weltraumteleskops Hubble von M100 wurde mit der Wide Field Camera 3 fotografiert, es betont helle blaue Sternhaufen und komplexe, verschachtelte Staubbahnen, beide sind Merkmale dieser Galaxienklasse. Untersuchungen veränderlicher Sterne in M100 spielten eine wichtige Rolle bei der Ermittlung von Größe und Alter des Universums.

Zur Originalseite

Arp 188 und der Schweif der Kaulquappe

Rechts oben ist eine Galaxie, die einen sehr dreidimensionalen Eindruck macht. Die Spiralarme erscheinen in zwei Ebenen gewickelt, nach rechts unten verläuft ein Strang aus Sternen und blauen Sternhaufen. Im Hintergrund sind zahlreiche Galaxien verteilt.

Bildcredit: Hubble-Vermächtnisarchiv, ESA, NASA; Bearbeitung: Faus Márquez (AAE)

Beschreibung: Warum hat diese Galaxie einen so langen Schweif? Diese tolle Ansicht basiert auf Bilddaten des Hubble-Vermächtnisrchivs. Sie zeigt die zerrissene Spiralgalaxie Arp 188, die Kaulquappengalaxie, vor einem dramatischen Hintergrund mit ferne Galaxien.

Die kosmische Kaulquappe liegt an die 420 Millionen Lichtjahre entfernt im nördlichen Sternbild Drache (Draco). Ihr markanter Schweif ist ungefähr 280.000 Lichtjahre lang und zeigt massereiche helle blaue Sternhaufen. Man erzählt, dass eine kompaktere Eindringlingsgalaxie vor Arp 188 kreuzte – auf dieser Ansicht von rechts nach links – und durch den Gravitationsanzug hinter der Kaulquappe herumgeschlungen wurde. Bei der nahen Begegnung zogen Gezeitenkräfte Sterne, Gas und Staub aus der Spiralgalaxie, aus denen der spektakuläre Schweif entstand. Die Eindringlingsgalaxie liegt ungefähr 300.000 Lichtjahre dahinter und ist durch die Spiralarme im Vordergrund rechts oben sichtbar.

Wie ihr irdischer Namensvetter verliert die Kaulquappengalaxie wahrscheinlich ihren Schweif, wenn sie älter wird, und die Sternhaufen im Schweif bilden kleinere Begleiter der großen Spiralgalaxie.

Zur Originalseite

Die Fee des Adlernebels

Die riesige dunkle Statue aus Staub erinnert an eine Fee, doch sie spuckt heiße Strahlung. Dahinter sind Staubwolken, die unten braun und oben bläulich schimmern.

Bildcredit: NASA, ESA, Das Hubble-Vermächtnisteam, (STScI/AURA)

Die Staubskulpturen in M16, dem Adlernebel, lösen sich auf. Starkes Sternenlicht trägt die kühlen kosmischen Berge ab. Übrig bleiben Säulen, die an Statuen erinnern. Man könnte darin mythologische Untiere erkennen. Hier seht ihr eine von mehreren auffälligen Staubsäulen im Adlernebel. Sie wird als gewaltige außerirdische Fee beschrieben. Doch diese Fee ist zehn Lichtjahre groß und verströmt eine Strahlung, die viel heißer ist gewöhnliches Feuer.

M16, der größere Adlernebel, ist eine riesige Hülle aus Gas und Staub, die verdunstet. Im Inneren wächst eine Höhle mit einer eindrucksvollen Sternschmiede, in der ein offener Sternhaufen entsteht.

Diese prächtige Säule ist ungefähr 7000 Lichtjahre entfernt und verdampft wahrscheinlich in etwa 100.000 Jahren. Das Bild wurde in wissenschaftlich zugewiesenen Farben gefärbt und 2005 veröffentlicht. Der Anlass war der 15. Jahrestag nach dem Start des Weltraumteleskops Hubble.

Zur Originalseite

Hüllen aus Sternen in der elliptischen Galaxie PGC 42871

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble Legacy Archive, NASA, ESA; Bearbeitung und Bildrechte: Domingo Pestana

Beschreibung: Wie wachsen Galaxien? Um das herauszufinden, wurde das Weltraumteleskop Hubble eingesetzt, um die ungewöhnliche elliptische Galaxie PGC 42871 abzubilden. Wie es zu den zahlreichen Hüllen aus Sternen um diese Galaxie kam, könnte Hinweise über ihre Entwicklung liefern. In die diffusen Hüllen sind massereiche Kugelsternhaufen eingebettet. Untersuchungen zeigen, dass diese Sterne während dreier unterschiedlicher Abschnitte entstanden sind.

Diese und andere Daten sind Hinweise, dass PGC 42871 in mindestens zwei galaktische Kollisionen verwickelt war, mindestens eine davon mit einer früheren Spiralgalaxie. Die verbleibende Spiralgalaxie ganz links ist gleich weit entfernt wie PGC 42871 und könnte an einigen Kollisionen beteiligt gewesen sein. PGC 42871 ist ungefähr 20.000 Lichtjahre groß und liegt etwa 270 Millionen Lichtjahre entfernt im Sternbild Zentaurus.

Offene Wissenschaft: Stöbern Sie in mehr als 1800 Codes der Astrophysics Source Code Library

Zur Originalseite

Hubble zeigt Jupiter in Ultraviolett

Bänder laufen um den Riesenplaneten Jupiter, doch sie sind - anders als sonst - rosa und hellblau gefärbt. Links unten sind zwei dunkle Ovale, es sind der Rote Fleck und ein weißes Oval. Die Bänder der Wirbelstürme verlaufen diagonal im Bild. Links oben steht der Mond Ganymed vor Jupiter.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Jupiter sieht in UV-Licht anders aus. Das Weltraumteleskop Hubble bildet regelmäßig den ganzen Gasriesen ab. Dabei untersucht man die Bewegungen von Jupiters Wolken. Die Bilder helfen der robotischen NASA-Raumsonde Juno, den planetaren Zusammenhang mit den kleinen Bildausschnitten, die sie sieht, zu erkennen. Die Farben, die man bei Jupiter überwacht, reichen über das sichtbare Licht hinaus bis ins ultraviolette und infrarote Licht.

Das Bild entstand 2017 im nahen Ultraviolettlicht. Jupiter wirkt darauf anders als sonst, weil der Anteil an Sonnenlicht, das reflektiert wird, durch unterschiedlich hohe und breite Wolken zu verschiedenen Helligkeiten führt. Im nahen UV-Licht sind Jupiters Pole und sein großer Roter Fleck dunkel. Rechts ist ein kleines Oval, das in sichtbarem Licht weiß ist. Auch dieses ist recht dunkel. Weiter rechts sind Stürme auf einer Perlenschnur gereiht. In nahem UV-Licht sind sie am hellsten. Hier sind sie in rosaroten Falschfarben dargestellt. Links oben ist Ganymed, Jupiters größter Mond.

Juno zieht weiterhin in langen Schleifen in je 53 Tage pro Umlauf um Jupiter. Hubble erholt sich im Erdorbit vom Verlust eines Gyroskops, das der Stabilisierung diente.

Zur Originalseite

NGC 1672: Balkenspiralgalaxie von Hubble

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble Legacy Archive, NASA, ESA; Bearbeitung und Bildrechte: Domingo Pestana und Raul Villaverde

Beschreibung: Viele Spiralgalaxien haben Balken in ihrer Mitte. Sogar unsere Milchstraße besitzt vermutlich einen kleinen Zentralbalken.

Hier ist die Spiralgalaxie NGC 1672 mit einem markanten Balken zu sehen. Sie wurde außerordentlich detailreich mit dem Weltraumteleskop Hubble im Orbit fotografiert. Man sieht dunkle, faserartige Staubbahnen, junge Haufen aus hellen, blauen Sternen, rote Emissionsnebel aus leuchtendem Wasserstoff, in der Mitte einen langen, hellen Balken aus Sternen und einen hellen aktiven Kern, der wahrscheinlich ein sehr massereiches Schwarzes Loch enthält.

Licht braucht ungefähr 60 Millionen Jahre, um uns von NGC 1672 zu erreichen. NGC 1672 steht im Sternbild Schwertfisch (Dorado), sie umfasst zirka 75.000 Lichtjahre und wird erforscht, um herauszufinden, wie ein Spiralbalken in den Zentralregionen einer Galaxie zur Sternbildung beiträgt.

Zur Originalseite

NGC 1898: Kugelsternhaufen in der Großen Magellanschen Wolke

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: ESA/Hubble und NASA

Beschreibung: Juwelen strahlen nicht so hell – das tun nur Sterne. Und fast jeder Punkt in dieser glitzernden Schmuckschatulle dieses Bildes, das mit dem Weltraumteleskop Hubble aufgenommen wurde, ist ein Stern.

Nun sind einige Sterne rötlicher als unsere Sonne, manche sind bläulicher – doch sie sind alle viel weiter entfernt. Obwohl Licht nur ungefähr 8 Minuten braucht, um von der Sonne zur Erde zu gelangen, ist NGC 1898 so weit entfernt, dass Licht zirka 160.000 Jahre bis hierher unterwegs ist. Diese riesige Sternenkugel NGC 1898 wird als Kugelsternhaufen bezeichnet und befindet sich im Zentralbalken der Großen Magellanschen Wolke (GMW), einer Begleitgalaxie unserer großen Milchstraße.

Dieses vielfarbige Bild vereint Licht von Infrarot bis Ultraviolett und wurde fotografiert, um herauszufinden, ob die Sterne von NGC 1898 alle gleichzeitig entstanden sind oder nicht. Es gibt immer mehr Hinweise, dass die meisten Kugelsternhaufen etappenweise Sterne bildeten, und dass insbesondere die Sterne in NGC 1898 kurz nach Begegnungen vor sehr langer Zeit mit der Kleinen Magellanschen Wolke (KMW) und unserer Milchstraße entstanden sind.

Zur Originalseite

Der einsame Neutronenstern im Supernovaüberrest E0102-72.3

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: (NASA/CXC/ESO/F. Vogt et al.); Optisch: (ESO/VLT/MUSE und NASA/STScI)

Beschreibung: Warum sitzt dieser Neutronenstern nicht in der Mitte? Vor einiger Zeit wurde ein einsamer Neutronenstern in den Trümmern einer alten Supernovaexplosion entdeckt. Der „einsame Neutronenstern“, um den es geht, ist der blaue Punkt in der Mitte des roten Nebels links unten in E0102-72.3.

Auf diesem Bildkomposit ist Röntgenlicht, das vom Chandra-Observatorium der NASA fotografiert wurde, blau abgebildet, während optisches Licht, das mit dem Very Large Telescope der ESO in Chile und dem Weltraumteleskop Hubble der NASA im Orbit fotografiert wurde, rot und grün dargestellt wird.

Die versetzte Position dieses Neutronensterns ist unerwartet, da der dichte Stern vermutlich der Kern jenes Sterns ist, der als Supernova explodierte und den äußeren Nebel bildete. Es wäre möglich, dass der Neutronenstern in E0102 durch die Supernova selbst aus der Mitte des Nebels gestoßen wurde, doch dann wäre es seltsam, dass der kleinere rote Ring auf den Neutronenstern zentriert bleibt. Alternativ könnte der äußere Nebel durch ein anderes Szenario entstanden sein – vielleicht sogar unter Einfluss eins anderen Sterns. Künftige Beobachtungen der Nebel und des Neutronensterns werden das Rätsel wahrscheinlich lösen.

Zur Originalseite