ESO 137-001 entblättern

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, CXC

Beschreibung: Die Spiralgalaxie ESO 137-001 rast durch den massereichen Galaxienhaufen Abell 3627, der ungefähr 220 Millionen Lichtjahre entfernt ist. Die ferne Galaxie liegt in diesem farbenprächtigen Hubble-Chandra-Kompositbild hinter den Milchstraßensternen im Vordergrund des südlichen Sternbildes Südliches Dreieck. Da die Spirale mit fast 7 Millionen Kilometern pro Stunde dahinrast, werden Gas und Staub darin entfernt, wenn der Staudruck des heißen, dünnen Mediums im Galaxienhaufen stärker wird als die Gravitation in der Galaxie.

Anhand der Daten von Hubble im sichtbaren Licht ist klar erkennbar, dass im abgestreiften Material entlang der kurzen, nachziehenden blauen Schliere helle Sternhaufen entstanden sind. Chandras Röntgendaten zeigen die gewaltige Ausdehnung des aufgeheizten, abgestreiften Gases als diffuse Bahnen in dunklerem Blau, die sich über mehr als 400.000 Lichtjahre zum rechten unteren Rand ausdehnen. Der deutliche Verlust an Staub und Gas macht neue Sternbildung in dieser Galaxie schwierig. Im Bild liegt rechts neben ESO 137-001 eine gelbliche elliptische Galaxie, der es an Sterne bildendem Staub und Gas mangelt.

Zur Originalseite

M86 im Zentrum des Virgohaufens

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Mark Hanson, Stan Watson Obs.

Beschreibung: Sind diese beiden großen Galaxien durch eine Brücke aus Gas verbunden? Gut möglich, aber schwierig festzustellen. M86 links oben ist eine riesige elliptische Galaxie beim Zentrum des nahen Virgo-Galaxienhaufens. Unsere Milchstraße fällt in die Richtung des Virgohaufens, der etwa 50 Millionen Lichtjahre entfernt ist.

Rechts unter M86 befindet sich die ungewöhnliche Spiralgalaxie NGC 4438, welche – zusammen mit ihrem winkelförmigen Nachbarn NGC 4435 – als Augen der Jungfrau (auch Arp 120) bekannt ist. Dieses Bild ist eines der detailreicheren, die bisher von der Region aufgenommen wurden, es deutet an, dass M86 von rot leuchtendem Gas umgeben ist, das sie scheinbar mit NGC 4438 verbindet. Das Bild ist etwa so groß wie der Vollmond.

Es ist aber auch bekannt, dass dem Virgohaufen Cirrusgas in unserer Galaxis vorgelagert ist, und Beobachtungen der geringen Geschwindigkeit dieses Gases sind scheinbar besser mit dieser Ursprungshypothese vereinbar. Künftige Forschungen könnten eine klare Antwort liefern, die auch erklären könnte, wie die ausgefahrenen blauen Arme von NGC 4435 entstanden sind.

Zur Originalseite

Zufallsblitz – ein Kandidat für den bisher fernsten Stern

Die Markierung im linken Bild zeigt einen besonderen Stern, der in den Einschüben rechts markiert ist. Im oberen Bild von 2011 ist an der Stelle kein Stern, im unteren Bild von 2016 tauchte er wie aus dem Nichts auf.

Bildcredit: NASA, ESA und P. Kelly (U. Minnesota) et al.

Stammt dieser Blitz vom fernsten Stern, den wir je gesehen haben? Auf Bildern des Weltraumteleskops Hubble wurde zufällig ein unerwarteter Lichtblitz entdeckt. Er ist vielleicht nicht nur ein ungewöhnliches Ereignis, bei dem eine Gravitationslinse entstand. Es kann sein, dass er das Bild eines normalen Sterns ist, der 100 Mal weiter entfernt ist als jeder Stern, der bisher einzeln abgebildet wurde.

Das Bild zeigt links viele gelbliche Galaxien im Galaxienhaufen. Rechts zeigt ein ausgedehntes Quadrat, wo 2016 eine Quelle auftauchte, die 2011 nicht erkennbar war. Das Spektrum und die Veränderlichkeit dieser Quelle ähneln seltsamerweise nicht einer Supernova. Stattdessen passen sie eher zu einem normalen blauen Überriesenstern, der durch mehrere ausgerichtete Gravitationslinsen etwa 2000-fach vergrößert wurde. Diese Quelle wird Icarus genannt. Sie befindet in einer Galaxie, die weit hinter dem Galaxienhaufen im fernen Universum liegt – bei einer Rotverschiebung von 1,5.

Nehmen wir an, die Linse wurde korrekt interpretiert und Icarus ist kein explodierender Stern. Dann könnten weitere Beobachtungen dieses Sterns und anderer Sterne, die ähnlich vergrößert sind, Information liefern, wie viel stellare und Dunkle Materie in diesem Galaxienhaufen und im Universum vorhanden ist.

Zur Originalseite

Der Coma-Galaxienhaufen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Russ Carroll, Robert Gendler und Bob Frank; Dan Zowada Memorial Observatory

Beschreibung: Fast jedes Objekt auf diesem Foto ist eine Galaxie. Der hier gezeigte Coma-Galaxienhaufen ist einer der dichtesten Haufen, die wir kennen, er enthält Tausende Galaxien. Jede dieser Galaxien enthält Milliarden Sterne, genau wie unsere Milchstraße.

Obwohl er verglichen mit den meisten anderen Galaxienhaufen nahe liegt, braucht das Licht des Comahaufens immer noch Hunderte Millionen Jahre, bis es uns erreicht. Der Comahaufen ist so groß, dass Licht Millionen Jahre braucht, nur um von einer Seite bis zur anderen zu gelangen. Die meisten Galaxien in Coma und anderen Haufen sind elliptisch, während die meisten Galaxien außerhalb von Haufen spiralförmig sind. Die Natur von Comas Röntgenemissionen wird weiterhin untersucht.

Zur Originalseite

Katalogeintrag Nummer 1

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Bernhard Hubl (CEDIC)

Beschreibung: Jede Reise beginnt mit einem ersten Schritt, und jeder Katalog einen ersten Eintrag. Die Bildfelder zeigen – in der chronologischen Reihenfolge der Erstveröffentlichung von links oben nach rechts unten – die ersten Einträge sechs bekannter Deep-Sky-Kataloge.

Der erste Eintrag in Charles Messiers Katalog aus dem Jahr 1774 ist das berühmte kosmische Krustentier M1 – der Supernovaüberrest Krebsnebel. J.L.E. Dreyers (nicht so neuer) New General Catalog wurde 1888 veröffentlicht. Sein NGC 1, eine Spiralgalaxie im Pegasus, befindet sich im nächsten Bildfeld. Im gleichen Bild befindet sich knapp darunter eine weitere Spiralgalaxie, die als NGC 2 katalogisiert ist. IC 1 in Dreyers nachfolgendem Index Catalog (nächstes Bildfeld) ist jedoch eigentlich ein blasser Doppelstern.

Der Dunkelnebel Barnard 1, der als Teil des Perseus-Molekülwolkenkomplexes erkannt wurde, eröffnet die untere Reihe mit einem Katalog dunkler Markierungen am Himmel von E.E. Barnard aus dem Jahr 1919. Abell 1 ist ein ferner Galaxienhaufen in Pegasus aus George Abells Catalog of Rich Clusters of Galaxies aus dem Jahr 1958. Das letzte Bild zeigt vdB 1 aus Sidney van den Berghs Studien im Jahr 1966. Dieser hübsche blaue galaktische Reflexionsnebel ist im Sternbild Kassiopeia zu finden.

Zur Originalseite

Unerwartete Röntgenstrahlen vom Perseus-Galaxienhaufen

Mitten im Bild strahlt ein helles Licht. Es ist von einem violetten Schimmer umgeben, noch weiter außen verläuft ein breiter, dunkelblauer ovaler Ring. Im Bild sind einige Sterne und Galaxien verteilt.

Bildcredit: Röntgen: NASA/CXO/Oxford University/J. Conlon et al.; Radio: NRAO/AUI/NSF/Univ. of Montreal/Gendron-Marsolais et al.; Optisch: NASA/ESA/IoA/A. Fabian et al.; DSS

Warum leuchtet der Galaxienhaufen im Perseus so seltsam in einer bestimmten Wellenlänge von Röntgenlicht? Das ist nicht bekannt. Eine viel diskutierte Hypothese besagt, dass diese Röntgenstrahlen ein Hinweis auf die lange gesuchte Form Dunkler Materie sind. Das Rätsel dreht sich um eine Röntgenfarbe von 3,5 Kiloelektronenvolt (KeV). Sie leuchtet anscheinend nur dann stark, wenn man Bereiche weit außerhalb vom Haufenzentrum beobachtet. Im Bereich um das zentrale, sehr massereiche Schwarze Loch, das sich wahrscheinlich dort befindet, gibt es nur wenig 3,5 KeV-Röntgenstrahlung.

Ein ziemlich umstrittener Lösungsvorschlag lautet, dass es sich um etwas handeln könnte, das man nie zuvor sah: fluoreszierende Dunkle Materie (FDM). Diese Art Dunkler Teilchenmaterie könnte 3,5-KeV-Röntgenstrahlung absorbieren. Falls dem so ist, strahlt FDM nach Absorption dieses Röntgenlicht vielleicht später aus dem ganzen Haufen ab. Dabei entsteht eine bestimmte Emissionslinie. Sieht man sie jedoch vor der Zentralregion um das Schwarze Loch, müsste die Absorption von FDM deutlicher ausfallen und eine Absorptionslinie erzeugen.

Das Kompositbild zeigt den Galaxienhaufen im Perseus. Sichtbares Licht und Radiolicht leuchten rot. Das Röntgenlicht wurde vom Weltraumobservatorium Chandra aufgenommen. Es ist blau dargestellt.

Zur Originalseite

NGC 891 versus Abell 347

Mitten im Bild leuchtet der gezackte gelbliche Stern HD 14771 im Sternbild Andromeda. Rechts oben ist eine Spiralgalaxie fast genau von der Kante zu sehen. Im Rest des Bildes sind Spiralgalaxien und Sterne verteilt.

Bildcredit und Bildrechte: Laszlo Bagi

In diesem Teleskopsichtfeld liegen ferne Galaxien hinter gezackten Sternen der Milchstraße im Vordergrund. Die Szenerie ist auf den gelblichen Stern HD 14771 zentriert. Sie zeigt etwa 1 Grad des Himmels im nördlichen Sternbild Andromeda.

Rechts oben liegt die große Spiralgalaxie NGC 891. Sie ist 100.000 Lichtjahre groß und fast exakt von der Seite zu sehen. NGC 891 ist ungefähr 30 Millionen Lichtjahre entfernt. Mit ihrer abgeflachten dünnen galaktischen Scheibe sieht sie unserer Milchstraße sehr ähnlich. Ihre Scheibe und die zentrale Wölbung sind in der Mitte von dunklen, undurchsichtigen Staubwolken durchschnitten. Links unten sind Mitglieder des Galaxienhaufens Abell 347 verteilt.

Abell 347 ist fast 240 Millionen Lichtjahre entfernt. Auf dem scharfen Bild sehen wir seine großen Galaxien. Sie haben ähnliche Maße wie NGC 891, sind aber fast 8-mal weiter entfernt. Daher ist die scheinbare Größe der Galaxien in Abell 347 nur etwa ein Achtel von NGC 891.

Zur Originalseite

Zwei Schwarze Löcher tanzen in 3C 75

Vor einem blauen Nebel stömen von zwei hellen Lichtquellen rosafarbene, nebelartige Strahlen aus, die nach links gefegt wirken.

Bildcredit: Röntgen: NASA/CXC/D. Hudson, T. Reiprich et al. (AIfA); Radio: NRAO/VLA/ NRL

Was geschieht im Zentrum der aktiven Galaxie 3C 75? Dieses Kompositbild entstand aus Röntgendaten (blau) und Radiowellenlängen (rosarot). In der Mitte sind zwei helle Quellen. Es sind zwei sehr massereiche Schwarze Löcher, die einander umkreisen. Sie speisen die gewaltige Radioquelle 3C 75. Die massereichen Schwarzen Löcher sind 25.000 Lichtjahre voneinander entfernt. Das Gas, das sie umgibt, ist viele Millionen Grad heiß. Es strahlt Röntgenlicht ab.

Die Schwarzen Löcher befinden sich in den Kernen zweier Galaxien im Galaxienhaufen Abell 400, die miteinander verschmelzen. Sie stoßen Strahlen aus relativistischen Teilchen aus. Ihre Distanz zu uns beträgt etwa 300 Millionen Lichtjahre. Man vermutet, dass die beiden Schwarzen Löcher durch Gravitation in einem Binärsystem aneinander gebunden sind. Wahrscheinlich entsteht die einheitlich zurückgefegte Erscheinung der Strahlen, weil sie sich gemeinsam bewegen. Sie rasen mit 1200 Kilometern pro Sekunde durch das heiße Gas im Haufen.

In der Umgebung dicht gedrängter Galaxienhaufen im fernen Universum gibt es wohl viele so spektakuläre kosmische Verschmelzungen. Kurz bevor die Objekte verschmelzen, stoßen sie starke Gravitationswellen aus.

Zur Originalseite