Dunkle Kugel im invertierten Sternenfeld

Das Bild zeigt die Sonne farb- und schwarzweiß-invertiert als blauen Ball mit hellen Rändern vor dem Negativ eines Sternenfeldes. Auf der Sonne befinden sich Filamente, Sonnenflecken und Granulation, am Rand ragen Protuberanzen hoch.

Bildcredit: Jim Lafferty

Wirkt dieser seltsame dunkle Ball irgendwie vertraut? Vielleicht, denn es ist unsere Sonne. Dieses detailreiche Sonnenbild aus dem Jahr 2012 wurde ursprünglich in einer sehr spezifischen Farbe von rotem Licht aufgenommen, dann in Schwarz-Weiß gerendert und schließlich farbinvertiert. Das fertige Ergebnisbild wurde auf ein ebenfalls farbinvertiertes Sternenfeld gelegt.

Im Bild der Sonne seht ihr lange Lichtfilamente, dunkle aktive Regionen sowie einen sich bewegenden Teppich aus heißem Gas, und am Rand ragen Protuberanzen hoch. Auf der Oberfläche unserer Sonne herrscht manchmal reges Treiben, besonders während eines Sonnenmaximums, das ist die Zeit, zu der ihr Oberflächenmagnetfeld am stärksten ausgeprägt ist.

Außer einer so malerischen aktiven Sonne kann auch das ausgestoßene Plasma sehr beeindruckend wirken, wenn es auf das Erdmagnetfeld trifft und dort Polarlichter hervorruft.

Selbst berechnen: Durchstöbt mehr als 2900 Codes der Astrophysics Source Code Library
Zur Originalseite

Ein langes, gewundenes Filament auf der Sonne

Das invertierte Falschfarbenbild zeigt eins der längsten je beobachteten Sonnenfilamente vor der teppichartigen Struktur der Sonne.

Bildcredit und Bildrechte: Alan Friedman (Averted Imagination)

Anfang des Monats zeigte die Sonne eines der längsten Filamente seit Beginn der Aufzeichnungen. Das Filament ist der helle, gewundene Strang in der Bildmitte, seine volle Länge wird auf etwa einen halben Sonnenradius geschätzt – 350.000 Kilometer.

Ein Filament besteht aus heißem Gas, das vom Magnetfeld der Sonne in Schwebe gehalten wird. Von der Seite ist es als erhabene Protuberanz zu sehen. Gleichzeitig ist eine kleinere Protuberanz am Sonnenrand sichtbar.

Dieses Bild ist in invertierten Falschfarben dargestellt, um sowohl das Filament als auch die teppichartige Chromosphäre zu zeigen. Der helle Punkt rechts oben ist eigentlich ein dunkler Sonnenfleck, er ist etwa so groß wie die Erde.

Sonnenfilamente bleiben üblicherweise Stunden bis Tage bestehen, danach brechen sie zusammen und das heiße Plasma fließt zur Sonne zurück. Doch manchmal explodieren sie und schleudern Teilchen ins Sonnensystem, manche davon lösen auf der Erde Polarlichter aus.

Dieses Filament von Anfang September blieb etwa eine Woche lang stabil.

Zur Originalseite

Eine gewaltige Tsunami-Stoßwelle auf der Sonne

Diese tsunami-ähnliche Stoßwelle auf der Sonne, die von der Aktiven Region AR 10930 ausging, ist als  Moreton-Welle bekannt.

Bildcredit: NSO/AURA/NSF und das USAF-Forschungslabor

So große Tsunamis gibt es nicht auf der Erde. 2006 erzeugte eine große Sonneneruption aus einem Sonnenfleck von der Größe der Erde eine tsunamiähnliche Stoßwelle, die sogar für die Sonne spektakulär war.

Das Optische Sonnenüberwachungs-Netzwerk (Optical Solar Patrol Network, OSPAN) in New Mexico (USA) erfasste diesen Tsunami, der von der Aktiven Region AR 10930 auswärts wanderte. Die Stoßwelle ist in der Wissenschaft als Moreton-Welle bekannt. Sie komprimierte und erhitzte Gase, darunter den Wasserstoff in der Photosphäre der Sonne, und verursachte ein kurzzeitiges helleres Leuchten. Dieses Bild wurde in einer sehr spezifischen roten Farbe aufgenommen, die ausschließlich von Wasserstoff abgestrahlt wird.

Der rasende Tsunami löschte einige aktive Filamente auf der Sonne aus, manche davon entstanden später neu. Der Sonnen-Tsunami breitete sich mit fast einer Million Kilometer pro Stunde aus und umkreiste die gesamte Sonne in wenigen Minuten.

Zur Originalseite

Ein Filament schießt aus der Sonne


Videocredit und -rechte: Stéphane Poirier

Beschreibung: Warum entweicht manchmal ein Teil der Sonnenatmosphäre ins All? Der Grund dafür liegt in den veränderlichen Magnetfeldern, die durch die Sonnenoberfläche verlaufen. In Regionen mit starkem Oberflächenmagnetismus, sogenannten aktiven Regionen, sind häufig dunkle Sonnenflecken anzutreffen.

Aktive Regionen können geladenes Gas entlang von gewölbten oder ausladenden Magnetfeldern kanalisieren. Dieses Gas fällt manchmal zurück, manchmal entweicht es, und manchmal trifft es sogar unsere Erde.

Dieses Zeitraffervideo zeigt die Entwicklung im Laufe einer Stunde, es wurde mit einem kleinen Teleskop in Frankreich aufgenommen und zeigt ein ausbrechendes Filament, das Ende letzten Monats von der Sonne aufstieg. Dieses Filament ist riesig: Zum Vergleich ist links oben die Größe der Erde abgebildet.

Kurz nachdem das Filament aufstieg, stieß die Sonne eine mächtige Fackel der X-Klasse aus, während ein gewaltiger Sonnen-Tsunami die Oberfläche erschütterte. Das Ergebnis war eine Wolke geladener Teilchen, die durch unser Sonnensystem rasten, unsere Erde aber großteils verfehlten – zumindest diesmal. Dennoch traf eine ausreichende Menge Sonnenplasma auf das Erdmagnetfeld, um ein paar blasse Polarlichter hervorzurufen.

Zur Originalseite

Eine Sonnenprotuberanz bricht aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA’s GSFC, SDO AIA Team

Beschreibung: Was ist mit unserer Sonne passiert? Nichts besonders Ungewöhnliches – sie warf ein Filament aus. Gegen Mitte 2012 brach plötzlich ein lange bestehendes Sonnenfilament in den Weltraum aus und erzeugte einen energiereichen koronalen Massenauswurf (KMA).

Das Filament war tagelang vom ständig wechselnden Magnetfeld der Sonne hochgehalten worden, und der Zeitpunkt des Ausbruchs war unerwartet. Diese Explosion wurde vom Solar Dynamics Observatory im Sonnenorbit genau beobachtet, dabei schossen Elektronen und Ionen ins Sonnensystem, von denen einige drei Tage später die Erde erreichten, auf die Magnetosphäre der Erde trafen und gut sichtbare Polarlichter hervorriefen. Auf diesem Ultraviolettbild sind über dem ausbrechenden Filament Plasmaschleifen um eine aktive Region zu sehen.

Obwohl die Sonne derzeit ein relativ inaktives Stadium ihres 11-Jahres-Zyklus erreicht hat, öffneten sich unerwartete Löcher in der Sonnenkorona, die dafür sorgen, dass ein Überschuss geladener Teilchen in den Weltraum strömt. Wie zuvor erzeugen diese geladenen Teilchen Polarlichter.

Zur Originalseite

50.000 Kilometer über der Sonne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Pete Lawrence

Beschreibung: Was geschieht am Rand der Sonne? Hier ist scheinbar ein tobendes Ungeheuer abgebildet, doch es ist nur eine ungeheure Protuberanz – eine Hülle aus dünnem Gas, die vom Magnetfeld der Sonne über der Oberfläche gehalten wird. Das Sonnenereignis wurde letztes Wochenende mit einem kleinen Teleskop fotografiert, das Bild wurde dann invertiert und eingefärbt. Die Protuberanz erhebt sich, wie die Linien zeigen, mehr als 50.000 Kilometer über die Sonnenoberfläche, im Vergleich dazu wirken sogar die 12.700 km des Erddurchmessers klein. Unter der Riesenprotuberanz liegt die Aktive Region 12585, während helle Filamente über einem fließenden Sonnenteppich aus Fibrillen schweben. Filamente sind Protuberanzen und Fibrillen sind Spikulen, beide sind vor der Sonnenscheibe zu sehen. Energiereiche Ereignisse wie dieses werden nun seltener, da sich die Sonne einem Fleckenminimum ihres 11-jährigen Aktivitätszyklus nähert.

Zur Originalseite

Eine riesige Sonnenprotuberanz bricht aus


Videocredit: NASAGSFC, SDO AIA Team

Beschreibung: Protuberanzen explodieren manchmal oberhalb der Sonne. Hier ist zu sehen, wie ein riesiges Filament länger als eine Woche über der Sonnenoberfläche schwebte, ehe es Ende 2010 ausbrach. Die Bildfolge wurde vom Solar Dynamics Observatory (SDO) im Erdorbit in einer Farbe des Ultraviolettlichtes aufgenommen. Die Explosion erzeugte einen koronalen Massenauswurf, der sehr energiereiches Plasma ins Sonnensystem ausstieß. Diese Plasmawolke verfehlte jedoch die Erde, daher verursachte sie keine Polarlichter. Dieser Ausbruch zeigt, wie weit voneinander entfernte Bereiche auf der Sonne manchmal gemeinsam agieren können. Explosionen wie diese treten wahrscheinlich in den nächsten Jahren weniger häufig auf, da unsere Sonne ein Minimum an magnetischer Oberflächenaktivität durchlebt.

Zur Originalseite

Ausbruch einer Protuberanz von SDO


Videocredit: NASA/Goddard/SDO AIA Team

Beschreibung: Zu den spektakulärsten Ansichten der Sonne gehören ausbrechende Protuberanzen. 2011 fotografierte die Raumsonde Solar Dynamic Observatory der NASA im Orbit um die Sonne eine eindrucksvoll große Protuberanz, die auf der Oberfläche ausbrach. Dieses Zeitraffervideo, das 90 Minuten abdeckt, und für das alle 24 Sekunden in Ultraviolettlicht ein neues Bild fotografiert wurde, zeigt die dramatische Explosion. Die Protuberanz ist gewaltig – die ganze Erde würde leicht unter den wallenden Schleier aus heißem Gas passen. Eine Protuberanz wird vom Magnetfeld der Sonne gelenkt und manchmal über der Sonnenoberfläche in Schwebe gehalten. Eine ruhende Protuberanz bleibt üblicherweise etwa einen Monat bestehen und kann als koronaler Massenauswurf (KMA) ausbrechen, dabei stößt sie heißes Gas ins Sonnensystem. Der Energiekreislauf, der eine Sonnenprotuberanz erzeugt, ist Gegenstand der Forschung. Da die Sonne das Sonnenmaximum überschritten hat, nehmen Sonnenaktivitäten wie ausbrechende Protuberanzen im Laufe der nächsten Jahre ab.

Zur Originalseite

Über die Sonne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Göran Strand

Beschreibung: Ein langes Sonnenfilament erstreckt sich auf diesem Teleskopbild vom 27. April über die relativ ruhige Oberfläche der Sonne. Das negative oder invertierte Schmalbandbild entstand im Licht ionisierter Wasserstoffatome. Der links oben sichtbare prächtige Schleier aus magnetisiertem Plasma türmt sich über der Oberfläche auf und reicht sogar über den Sonnenrand hinaus. Wie lang ist das Sonnenfilament? Etwa so lang wie die Entfernung von der Erde zum Mond, was die Skala links veranschaulicht. Das lange Filament war einen Tag später über die Sonnenscheibe nach rechts gewandert, brach aus und hob von der Sonnenoberfläche ab. Auch ein koronaler Massenauswurf wurde von dort ausgestoßen, was von Sonnenforschungssatelliten beobachtet wurde, er wird jedoch voraussichtlich weit an unserem lieblichen Planeten vorbeitreiben.

Zur Originalseite

Ein extrem langes Filament auf der Sonne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Oliver Hardy

Beschreibung: Gestern stellte die Sonne eines der längsten Filamente zur Schau, die je erfasst wurden. Es könnte auch heute noch da sein. Das gewaltige Filament ist im Bild als dunkler Streifen unter der Mitte zu sehen und erstreckt sich auf der Vorderseite der Sonne über eine Distanz, die länger ist als der Sonnenradius – mehr als 700.000 Kilometer. Ein Filament besteht aus heißem Gas, das vom Magnetfeld der Sonne in Schwebe gehalten wird, sodass es von der Seite gesehen als erhabene Protuberanz erscheint. Das Bild bildet das Filament in von Wasserstoff abgestrahltem Licht ab und zeigt somit die Chromosphäre der Sonne. Sonnenbeobachtungsteleskope, darunter das Solar Dynamics Observatory (SDO) der NASA, verfolgen diese ungewöhnliche Struktur, wobei SDO gestern ein einhüllendes spiralförmiges Magnetfeld beobachtete. Da Filamente typischerweise nur Stunden oder Tage bestehen bleiben, könnten Teile davon jederzeit kollabieren oder ausbrechen und heißes Plasma entweder zur Sonne zurückwerfen oder ins äußere Sonnensystem ausstoßen. Ist das Filament noch da? Sehen Sie nach, indem Sie auf das aktuelle SDO-Sonnenbild klicken.

Zur Originalseite

Ein Sonnenfilament bricht aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASAGSFC, SDO AIA Team

Beschreibung: Was ist mit unserer Sonne passiert? Nichts besonders Ungewöhnliches – sie stieß nur ein Filament aus. Mitte des Jahres 2012 brach plötzlich ein lange bestehendes Sonnenfilament zum Weltraum hin aus und erzeugte einen energiereichen koronalen Massenauswurf (KMA). Das Filament war tagelang vom sich ständig verändernden Magnetfeld der Sonne hochgehalten worden, und der Zeitpunkt des Ausbruchs war unerwartet. Die daraus resultierende Explosion, die vom Solar Dynamics Observatory von einer Bahn um die Sonne aus genau beobachtet wurde, schoss Elektronen und Ionen ins Sonnensystem, von denen manche drei Tage später die Erde erreichten, auf die irdische Magnetosphäre trafen und sichtbare Polarlichter erzeugten. Schleifen aus Plasma, die eine aktive Region umgeben, sind auf dem Ultraviolettbild über dem ausbrechenden Filament zu sehen. Letzte Woche fiel die Anzahl der auf der Sonne sichtbaren Sonnenflecken unerwarteterweise auf null, weshalb vermutet wird, dass auf der Sonne nun ein sehr ungewöhnliches Sonnenmaximum vorüber ist – jene Zeit im 11-Jahres-Zyklus der Sonne, in der sie am aktivsten ist.

Zur Originalseite