ESO 137-001 verliert ihre interstellare Materie

Eine Spiralgalaxie rast unglaublich schnell diagonal durchs Bild nach rechts oben. Sie zieht einen langen, blau leuchtenden Strahl aus abgestreiftem Gas und Staub hinter sich her.

Bildcredit: NASA, ESA, CXC

Die Spiralgalaxie ESO 137-001 rast durch den massereichen Galaxienhaufen Abell 3627. Er ist 220 Millionen Lichtjahre entfernt. Auf dem farbigen Kompositbild von Hubble und Chandra seht ihr die Galaxie zwischen Sternen im Vordergrund. Diese befinden sich in der Milchstraße im Sternbild Südliches Dreieck.

Die Spirale rast mit fast 7 Millionen Kilometern pro Stunde dahin. Deshalb wird alles an Gas und Staub abgestreift, das sich darin befindet. Der Staudruck der heißen, dünnen interstellaren Materie im Haufen ist nämlich stärker als die Gravitation der Galaxie. Die Hubble-Daten wurden in sichtbarem Licht aufgenommen. Sie zeigen, dass im abgestreiften Material in den kurzen, nachziehenden blauen Strahlen helle Sternhaufen entstanden sind.

Chandras Daten in Röntgenlicht zeigen die gewaltige Menge an heißem, abgestreiftem Gas als diffuse, dunkle blaue Streifen. Sie reichen mehr als 400.000 Lichtjahre nach rechts unten. Der beträchtliche Verlust an Staub und Gas erschwert neue Sternbildung in dieser Galaxie. Rechts neben ESO 137-001 ist eine gelbliche elliptische Galaxie, der es an Staub und Gas fehlt, womit sie Sterne bildenden könnte.

Zur Originalseite

Licht von Cygnus A in vielen Wellenlängen

Das Bild der Galaxie Cygnus A im Sternbild Schwan kombiniert Daten in vielen Wellenlängen des elektromagnetischen Spektrums. In der Mitte ist blauer Nebel, nach links und rechts strömen rötliche Wolken aus.

Bildcredit: Röntgen: NASA/CXC/SAO; Optisch: NASA/STScI; Radio: NSF/NRAO/AUI/VLA

Die Astronomie feiert das Internationalen Jahr des Lichtes. Hier seht ihr ein Bild der aktiven Galaxie Cygnus A im ganzen elektromagnetischen Spektrum mit vielen Details.

Das Bild enthält Röntgendaten des Chandra-Observatoriums in der Umlaufbahn. Sie sind blau gefärbt. Offenbar ist Cygnus A eine gewaltige Quelle energiereicher Röntgenstrahlen. Doch bekannt ist sie eher für das energiearme Ende im elektromagnetischen Spektrum.

Cygnus A ist 600 Millionen Lichtjahre entfernt. Für Radioteleskope ist sie eine der hellsten Quellen am Himmel. Cygnus A ist die größte Radiogalaxie in unserer Nähe. Radioemissionen sind im Bild rot gefärbt. Sie breiten sich nach beiden Seiten auf einer gemeinsamen Achse fast 300.000 Lichtjahre weit aus.

Die Emissionen stammen von Strahlen relativistischer Teilchen. Diese Strahlen strömen von einem sehr massereichen Schwarzen Loch im Zentrum aus. Heiße, helle Flecken markieren die Enden der Ströme, die in das kühle, dichte Material in der Umgebung dringen.

Die Daten von Hubble zeigen die Galaxie in sichtbaren Wellenlängen. Sie sind gelb gefärbt. Das Feld im Hintergrund stammt von der Digital Sky Survey (Digitale Himmelsdurchmusterung). Es ergänzt die Ansicht in vielen Wellenlängen.

Zur Originalseite

Supernovaüberrest Puppis A

Die faserartige bunte Wolke im Bild zeigt den Supernovaüberrest Puppis A im Sternbild Achterdeck des Schiffes. Die expandierende Wolke wurde in Röntgen- und Infrarotlicht aufgenommen und farbcodiert abgebildet.

Bildcredit: Röntgen: NASA/CXC/IAFE/ G. Dubner et al., ESA/XMM-Newton; Infrarot: NASA/ESA/JPL-Caltech/GSFC/ R. Arendt et al.

Der Supernovaüberrest Puppis A entstand durch die Explosion eines massereichen Sterns. Er breitet sich ins interstellare Medium aus. Seine Entfernung beträgt etwa 7000 Lichtjahre. In dieser Distanz ist die Sondierung in Falschfarben der komplexen Expansion etwa 180 Lichtjahre groß.

Das Bild basiert auf den vollständigsten Daten, die bislang in Röntgen- und Infrarotlicht erhoben wurden. Die Röntgendaten stammen von Chandra und XMM/Newton, die Infrarot-Daten vom Weltraumteleskop Spitzer.

Das faserartige Röntgenlicht ist in Blau abgebildet. Es stammt von Gas, das durch die Stoßwelle der Supernova aufgeheizt wurde. Das rot und grün dargestellte Infrarotlicht stammt von warmem Staub. Die hellen Pastelltöne zeigen Regionen, wo sich komprimiertes Gas und aufgewärmter Staub mischen.

Die Supernova wurde durch einen Kollaps im massereichen Sterneninneren ausgelöst. Ihr Licht erreichte die Erde vor etwa 3700 Jahren. Der Supernovaüberrest Puppis A ist weiterhin eine starke Quelle am Röntgenhimmel.

Zur Originalseite

SN 2014J schickt keine Röntgenstrahlen

Mitten im Bild leuchtet ein Nebel, er ist im Zentrum sehr hell und wird nach außen hin rötlich. Rechts neben der Mitte markiert ein weißer Kasten die Position der Supernova SN 2014J. Die Aufnahmen in Röntgenlicht vor und nach der Explosion sind in zwei Einschüben unten gezeigt.

Bildcredit: NASA / CXC / SAO / R. Margutti et al.

Im Jänner beobachteten Teleskope und Observatorien auf der ganzen Erde, wie die Helligkeit der Supernova SN 2014J in der nahen Galaxie M82 anstieg. Doch die vielleicht wichtigste Beobachtung gelang im Orbit. Dort sah das Röntgenobservatorium Chandra nämlich – nichts.

Die Explosion von SN 2014J wurde als Typ-Ia-Supernova klassifiziert. Man dachte, ein Weißer Zwerg hätte stetig Materie von einem Begleitstern abgezogen. Dieser Zuwachs hätte schließlich die Supernova gezündet. Zu diesem Modell gehört Röntgenstrahlung. Sie entsteht, wenn die Druckwelle der Supernova auf die übrige Materie in der Umgebung des Weißen Zwergs trifft.

Doch bei der Supernova SN 2014J war keine Röntgenstrahlung zu messen. Chandras Falschfarben-Röntgenbild der Galaxie M82 zeigt zwei großteils leeren Nahaufnahmen der Position der Supernova. Sie sind in den Einschüben „Pre“ (vorher) und „Post“ (nachher) abgebildet. Nach dem überraschenden Mangel an Röntgenstrahlung von SN 2014J werden neue Modelle entwickelt. Sie sollen klären, was die kosmische Explosion auslöste.

Zur Originalseite

Kosmischer Krebsnebel

Zwischen gleichmäßig verteilten Sternen leuchtet der planetarische Nebel M1. Er ist eine längliche, lebhafte Wolke, die am Rand rötlich und innen weiß leuchtet.

Bildcredit: NASA, Chandra-Röntgenobservatorium, SAO, DSS

Der Krebs-Pulsar ist ein magnetischer Neutronenstern. Er ist so groß wie eine Stadt und rotiert 30 Mal pro Sekunde um seine Achse. Der Pulsar befindet sich in der Mitte des Krebsnebels, der auf diesem Weitwinkelbild dargestellt ist. Der Supernovaüberrest liegt in unserer Milchstraße.

Das Kompositbild entstand aus optischen Übersichtsdaten und Röntgendaten des Chandra-Observatoriums im Orbit. Es wurde zur 15-Jahres-Feier von Chandras Erforschung des Hochenergie-Kosmos veröffentlicht.

Wie ein kosmischer Dynamo liefert der Pulsar die Energie für die Emissionen im Röntgenbereich und im sichtbaren Licht des Nebels. Dazu beschleunigt er geladene Teilchen auf extreme Energien und erzeugt so die Strahlen und Ringe, die im Röntgenlicht leuchten. Die innerste Ringstruktur ist etwa ein Lichtjahr groß.

Der rotierende Pulsar hat mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern des massereichen Sterns, der explodierte. Der Nebel besteht aus den Überresten der äußeren Schichten des Sterns, die sich ausdehnen. Die Supernovaexplosion wurde im Jahr 1054 beobachtet.

Zur Originalseite

Supernovaüberrest SN 1006

Vor einem Hintergrund aus kleinen, relativ dicht verteilten Sternen breitet sich eine Blase aus. Sie wirkt ein bisschen fluffig, der Rand erinnert an eine Seifenblase.

Bildcredit: NASA, ESA, Zolt Levay (STScI)

1006 n. Chr. blitzte am Himmel des Planeten Erde ein neuer Stern auf. Er war die vielleicht hellste Supernova seit Beginn der Geschichtsaufzeichnung. Die Trümmerwolke der Sternexplosion dehnt sich aus. Sie befindet sich im südlichen Sternbild Wolf. Noch heute veranstaltet sie eine kosmische Lichtschau im ganzen elektromagnetischen Spektrum.

Das Kompositbild zeigt Röntgendaten des Chandra-Observatoriums in Blau. Optische Daten sind in gelblichen Farbtönen und Radiodaten sind rot dargestellt. Die Trümmer sind heute als Supernovaüberrest SN 1006 bekannt. Die Wolke hat einen Durchmesser von etwa 60 Lichtjahren. Sie stammt vermutlich von einem Weißen Zwergstern.

Der kompakte Weiße Zwerg ist Teil eines Doppelsternsystems. Er zog allmählich Materie von seinem Begleitstern ab. Die Ansammlung an Masse löste später eine thermonukleare Explosion aus, die den Weißen Zwerg zerstörte.

Die Entfernung zum Supernovaüberrest beträgt etwa 7000 Lichtjahre. Somit ereignete sich die Explosion 7000 Jahre vor 1006, als das Licht die Erde erreichte. Stoßwellen im Überrest beschleunigen die Teilchen auf extreme Energien. Sie sind vermutlich eine Quelle der rätselhaften kosmischen Strahlung.

Zur Originalseite

M51: Röntgenstrahlen der Strudelgalaxie

Für dieses Bild wurden Daten in Röntgenlicht violett gefärbt. Darüber wurde ein Bild in sichtbarem Licht gelegt, man kann es aufrufen, wenn man den Mauspfeil über das Bild schiebt.

Bildcredit und Bildrechte: Röntgen: NASA, CXC, R. Kilgard (Wesleyan U. et al.; Optisch: NASA, STScI

Was wäre, wenn wir eine ganze Spiralgalaxie röntgen? Das tat kürzlich (wieder) das NASA-Röntgenobservatorium Chandra. Ziel waren zwei nahe Galaxien, die miteinander wechselwirken. Sie sind zusammen als Studelgalaxie (M51) bekannt. Dieses Bild der Spirale und ihrer Nachbarin stammt von Chandra. Es zeigt Hunderte glitzernder Röntgensterne. Für das Bild wurden Beobachtungen von Chandra im Röntgenlicht und vom Weltraumteleskop Hubble in sichtbarem Licht kombiniert.

Die Zahl heller Röntgenquellen ist für normale Spiralgalaxien oder elliptische Galaxien ungewöhnlich hoch. Sie lässt darauf schließen, dass im kosmischen Strudelbecken in M51 intensive Sternbildung stattfand. Wahrscheinlich handelt es sich Binärsysteme mit Neutronenstern und Schwarzen Löchern. Die beiden Galaxien sind als NGC 5194 (rechts) und NGC 5195 (links) katalogisiert. In ihren hellen Kernen gibt es Aktivität mit viel Energie.

Das Falschfarbenbild zeigt Röntgenlicht in Violett. Die diffusen Röntgen-Emissionen stammen zumeist von Gas, das von Supernova-Explosionen auf viele Millionen Grad aufgeheizt wird.

Zur Originalseite

Im Inneren des Flammennebels

Das Bild zeigt den Flammennebel im Sternbild Orion und seine Umgebung. Darüber wurde eine Röntgen-Infrarot-Abbildung gelegt.

Bildcredit: Optisch: DSS; Infrarot: NASA/JPL-Caltech; Röntgen: NASA/CXC/PSU/ K.Getman, E.Feigelson, M.Kuhn und das MYStIX-Team

Das optische Bild zeigt eine staubige, überfüllte Sternbildungsregion im Gürtel des Orion. Sie ist etwa 1400 Lichtjahre entfernt. Daraus sticht der Flammennebel hervor. Röntgendaten des Chandra-Observatoriums und Infrarotbilder des Weltraumteleskops Spitzer blicken tief ins Innere der Wolken. Sie bestehen aus leuchtendem Gas und undurchsichtigen Staubwolken.

Wenn ihr den Mauspfeil über das Bild schiebt oder darauf klickt, kommen viele Sterne im jungen eingebetteten Haufen NGC 2024 zum Vorschein. Sie sind nur 200.000 bis 1,5 Millionen Jahre alt. Das Kompositbild aus Röntgen- und Infrarot-Daten ist etwa 15 Lichtjahre breit. Es zeigt das Zentrum des Flammennebels.

Die Röntgen-Infrarot-Daten zeigen auch, dass sich die jüngsten Sterne auf die Mitte des Haufens befinden. Das widerspricht einfachen Modellen der Sternbildung dieser Sternschmiede. Diese Modelle besagen, dass die Sternbildung zuerst im dichteren Zentrum beginnt. Dann wandert sie schrittweise nach außen zum Rand. Dabei sollten ältere Sterne im Zentrum des Flammennebels zurückbleiben, nicht die jüngeren.

Zur Originalseite