Animation: Schwarzes Loch vernichtet Stern


Video-Illustrationscredit: DESY, Science Communication Lab

Beschreibung: Was passiert, wenn ein Stern einem Schwarzen Loch zu nahe kommt? Das Schwarze Loch zerreißt ihn – aber wie? Nicht die hohe Gravitationskraft ist das Problem – es sind die Gravitationskraftdifferenzen, die über den Stern hinweg verteilt sind, die zur Zerstörung führen.

Dieses animierte Video veranschaulicht die Auflösung. Am Beginn seht ihr einen Stern, der sich einem Schwarzen Loch nähert. Die Bahngeschwindigkeit nimmt zu, bei der größten Annäherung wird die äußere Atmosphäre des Sterns weggerissen. Ein Großteil der Sternatmosphäre verflüchtigt sich in den Weltraum, aber ein Teil kreist weiterhin um das Schwarze Loch und bildet eine Akkretionsscheibe.

Die Animation zeigt dann die Akkretionsscheibe mit Blick zum Schwarzen Loch. Neben seltsamen visuellen Gravitationslinseneffekten seht ihr sogar die Rückseite der Scheibe. Zuletzt verläuft der Blick einen der Strahlen entlang, die in der Rotationsachse ausgestoßen werden. Theoretische Modelle lassen vermuten, dass diese Strahlen nicht nur energiereiches Gas ausstoßen, sondern auch energiereiche Neutrinos erzeugen – eines davon wurde vielleicht kürzlich auf der Erde beobachtet.

Zur Originalseite

SS 433: Doppelstern-Mikroquasar


Animationscredit: DESY, Science Communication Lab

Beschreibung: SS 433 ist eines der exotischsten Sternsysteme, die wir kennen. Sein unscheinbarer Name entstand durch seinen Eintrag in einem Katalog von Milchstraßensternen, die eine für atomaren Wasserstoff charakteristische Strahlung aussenden. Sein auffälliges Verhalten stammt von einem kompakten Objekt – einem schwarzen Loch oder Neutronenstern –, um das sich eine Akkretionsscheibe mit Ausströmungen gebildet hat. Da die Scheibe und die Ausströmungen von SS 433 jenen um sehr massereiche schwarze Löcher in den Zentren ferner Galaxien ähneln, vermutet man, dass SS 433 ein Mikroquasar ist.

Dieses animierte Video basiert auf Beobachtungsdaten. Es zeigt einen massereichen, heißen, normalen Stern, der gemeinsam mit dem kompakten Objekt in einer Umlaufbahn gefangen ist. Zu Beginn des Videos sieht man, wie durch Gravitation Materie vom normalen Stern losgerissen wird, die auf eine Akkretionsscheibe fällt. Der Zentralstern stößt Strahlen aus ionisiertem Gas in entgegengesetzte Richtungen aus – mit jeweils etwa einem Viertel der Lichtgeschwindigkeit.

Im nächsten Abschnitt zeigt das Video eine Aufsicht auf die ausströmenden Strahlen, die eine Präzessionsbewegung ausführen und dabei eine sich ausdehnende Spirale erzeugen. Danach sieht man die sich ausbreitenden Strahlen aus noch größerer Entfernung nahe dem Zentrum im Supernovaüberrest W50.

Vor zwei Jahren fand man mithilfe der HAWC-Detektoranordnung in Mexiko unerwartet heraus, dass SS 433 Gammastrahlen mit ungewöhnlich hoher Energie (im TeV-Bereich) aussendet. Doch es gibt weitere Überraschungen: Eine aktuelle Analyse von Archivdaten des NASASatelliten Fermi zeigt eine Gammastrahlenquelle, die – wie man hier sieht – von den Zentralsternen getrennt ist, und die aus bisher unbekannten Gründen Gammastrahlenpulse mit einer Periode von 162 Tagen aussendet – das entspricht der Präzessionsperiode der Strahlen von SS 433.

Lehrende und Studierende: Ideen für die Verwendung von APOD im Lehrsaal
Zur Originalseite

Visualisierung: Schwarzes Loch mit Akkumulationsscheibe


Visualisierungscredit: Goddard-Raumfahrtzentrum der NASA, Jeremy Schnittman

Beschreibung: Wie sieht es aus, wenn man ein schwarzes Loch umkreist? Wenn das schwarze Loch von einer wirbelnden Scheibe aus leuchtendem Gas, das sich ansammelt, umgeben ist, lenkt die gewaltige Gravitation des schwarzen Lochs das Licht ab, das die Scheibe ausstrahlt. Dadurch sieht sie sehr ungewöhnlich aus. Diese Videoanimation visualisiert das.

Das Video beginnt mit der Beobachterin, die von knapp über der Ebene der Akkretionsscheibe auf das schwarzen Lochs blickt. Um das zentrale schwarze Loch herum verläuft ein dünnes, rundes Bild der umgebenden Scheibe, es markiert die Position der Photonensphäre – in deren Inneren der Ereignishorizont des schwarzen Lochs liegt.

Teile des großen Hauptbildes der Scheibe auf der linken Seite erscheinen heller, während sie sich auf euch zubewegen. Während das Video weiterläuft, fliegt ihr über das schwarze Loch und schaut von oben hinunter. Dann durchquert ihr die Scheibenebene am anderen Ende und kommt zum ursprünglichen Aussichtspunkt zurück. Die Akkretionsscheibe erzeugt einige interessante Bildumkehrungen, doch sie wirkt niemals flach.

Visualisierungen wie diese sind heute besonders interessant, weil das Event Horizon Telescope schwarze Löcher so detailreich wie nie zuvor abbildet.

Zur Originalseite

Ein schwarzes Loch zerstört einen vorbeiziehenden Stern

Wenn ein Stern einem Schwarzen Loch zu nahe kommt, können ihn die Gezeitenkräfte auseinanderreißen; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech

Beschreibung: Was geschieht mit einem Stern, der in die Nähe eines Schwarzen Lochs gelangt? Wenn der Stern ein massereiches Schwarzes Loch direkt trifft, fällt er als Ganzes hinein – und alles verschwindet.

Viel wahrscheinlicher ist jedoch, dass der Stern nahe genug an das Schwarze Loch herankommt, dass dessen Gravitation die äußeren Schichten des Sterns abzieht oder den Stern auseinanderreißt. Dann fällt ein Großteil vom Gas des Sterns nicht in das Schwarze Loch. Solche Ereignisse stellarer Gezeitenzerstörung können so hell wie eine Supernova sein, und ein immer größerer Teil dieser Ereignisse wird durch automatisierte Himmelsdurchmusterungen entdeckt.

Auf dieser künstlerischen Darstellung hat ein Stern gerade ein massereiches Schwarzes Loch passiert und verliert Gas, das im Orbit zurückbleibt. Der innere Rand einer Scheibe aus Gas und Staub, die das Schwarze Loch umgibt, wird von dem Zerstörungsereignis aufgeheizt und könnte nach dem Verschwinden des Sterns noch lange Zeit nachleuchten.

Zur Originalseite

Animation: Spiralscheibe um ein schwarzes Loch


Bildcredit: ESA, NASA, Hubble, M. Kornmesser

Beschreibung: Was sieht man, wenn man ein Schwarzes Loch umkreist? Viele Schwarze Löcher sind von wirbelnden Gasansammlungen umgeben, die als Akkretionsscheiben bezeichnet werden. Diese Scheiben können extrem heiß sein, und ein großer Teil des umkreisenden Gases fällt irgendwann durch den Ereignishorizont des Schwarzen Lochs – von wo es nie wieder auftaucht.

Diese Animation ist eine künstlerische Darstellung der seltsamen Scheibe, die spiralförmig um das sehr massereiche Schwarze Loch im Zentrum der Spiralgalaxie NGC 3147 wirbelt. Gas am inneren Rand dieser Scheibe kommt dem Schwarzen Loch so nahe, dass es sich ungewöhnlich schnell bewegt – mit 10 Prozent der Lichtgeschwindigkeit. So schnelles Gas leuchtet relativistisch – dadurch erscheint die Seite der Scheibe, die sich auf uns zubewegt, deutlich heller als die Seite, die sich von uns entfernt. Diese Animation basiert auf Bildern von NGC 3147, die kürzlich mit dem Weltraumteleskop Hubble gemacht wurden.

Astrophysiker: Mehr als 2000 Codes in der Quellcodebibliothek für Astrophysik

Zur Originalseite

Wachsendes Schwarzes Loch mit Strahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, Swift, Aurore Simonnet (Sonoma State U.)

Beschreibung: Was passiert, wenn ein Schwarzes Loch einen Stern verschlingt?

Viele Details sind noch unbekannt, doch aktuelle Beobachtungen liefern neue Hinweise. 2014 wurde von den bodengebundenen Roboterteleskopen des Projekts der automatisierten Ganzhimmelssuche nach Supernovae (ASAS-SN) eine mächtige Explosion beobachtet und weiterverfolgt, unter anderem von den Instrumenten des NASASatelliten Swift im Erdorbit. Computermodelle dieser Emissionen passen zu einem Stern, der von einem fernen, sehr massereichen Schwarzen Loch auseinandergerissen wird. Die Ergebnisse einer solchen Kollision sind auf dieser künstlerischen Darstellung dargestellt.

Das Schwarze Loch selbst ist als winziger schwarzer Punkt in der Mitte dargestellt. Wenn Materie ins Loch fällt, kollidiert sie mit anderer Materie und erhitzt sich. Das Schwarze Loch ist von einer Akkretionsscheibe aus heißer Materie umgeben, die einst der Stern war, und aus der Rotationsachse des Schwarzen Lochs strömt ein Strahl.

Zur Originalseite

Kataklysmische Dämmerung

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit und Bildrechte: Mark A. Garlick (Space-art.co.uk)

Beschreibung: Bringt diese Dämmerung eine neue Nova? Solche Überlegungen könnten Menschen der Zukunft anstellen, die auf einem Planeten leben, der in einem kataklysmischen veränderlichen Doppelsternsystem kreist. Bei kataklysmischen Veränderlichen fällt Gas von einem großen Stern auf eine Akkretionsscheibe um einen massereichen, aber kompakten weißen Zwergstern. Explosive kataklysmische Ereignisse wie eine Zwergnova können stattfinden, wenn ein Klumpen Gas im Inneren der Akkretionsscheibe über eine gewisse Temperatur erhitzt wird. An diesem Punkt fällt der Klumpen schneller auf den Weißen Zwerg und landet mit einem hellen Blitz. Solche Zwergnovae zerstören keinen der beide Sterne und können in unregelmäßigen Zeitabständen von wenigen Tagen bis zu zehn Jahren stattfinden. Zwar ist eine Nova weniger energiereich als eine Supernova, doch wenn wiederholte Novae nicht heftig genug sind, um mehr Gas auszustoßen als einfällt, sammelt sich die Masse auf dem Weißen Zwergstern an, bis dieser die Chandrasekhargrenze überschreitet. An diesem Punkt könnte eine Höhle im Vordergrund wenig Schutz bieten, da der gesamte Weiße Zwergstern in einer gewaltigen Supernova explodiert.

Zur Originalseite

Aussicht in der Nähe eines Schwarzen Lochs

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: April Hobart, CXC

Beschreibung: Im Zentrum eines wirbelnden Strudelbeckens aus heißem Gas sitzt wahrscheinlich ein Ungeheuer, das noch nie direkt zu sehen war: ein Schwarzes Loch. Untersuchungen des hellen Lichts, das vom wirbelnden Gas abgestrahlt wird, lassen häufig nicht nur auf die Anwesenheit eines Schwarzen Lochs schließen, sondern auch auf wahrscheinliche Eigenschaften. Man fand heraus, dass das Gas, das beispielsweise GRO J1655-40 umgibt, ein ungewöhnliches Flackern aufweist, mit einer Frequenz von 450 Mal pro Sekunde. Bei einer vorhergehenden Massenabschätzung für das Zentralobjekt von sieben Sonnenmassen kann die Frequenz des schnellen Flackerns durch ein Schwarzes Loch erklärt werden, das sehr schnell rotiert. Welche physikalischen Mechanismen das Flackern – und eine langsamere quasiperiodische Schwingung – in Akkretionsscheiben verursacht, die Schwarze Löcher und Neutronensterne umgeben, wird noch erforscht.

Zur Originalseite

Die wolkigen Kerne aktiver Galaxien


Bildcredit: NASA’s GSFC, W. Steffen (UNAM)

Beschreibung: Wie sieht es aus, wenn man ins Zentrum einer aktiven Galaxie reist? Vermutlich enthalten die meisten Galaxienzentren Schwarze Löcher, Millionen Mal massereicher als unsere Sonne. Die Räume, die diese sehr massereichen Schwarzen Löcher umgeben, sind jedoch vielleicht alles andere als ruhig, sie flackern in vielen Farben, daher trägt die gesamte Objektklasse die Bezeichnung „Aktive galaktische Kerne“ (AGK).

Dieses Video zeigt, wie ein aktiver galaktischer Kern aus der Nähe aussehen könnte. AGK besitzen üblicherweise massereiche Akkretionsscheiben, die das zentrale Schwarze Loch speisen, und mächtige Strahlen schießen elektrisch geladene Materie weit ins umgebende Universum.

Wolken aus Gas und Staub umkreisen die zentralen Schwarzen Löcher, und in jüngster Zeit erkannte man, dass diese so dicht sind, dass sie sogar gelegentlich die alles durchdringenden Röntgenstrahlen ausblenden, sodass sie uns nicht erreichen. Solche Trübungen des Röntgenlichtes können Stunden oder Jahre dauern und wurden bei der Analyse von Daten entdeckt, die im Laufe von mehr als einem Jahrzehnt vom RossiX-ray-Timing-Explorer (RXTE) der NASA gewonnen wurden.

Ist Ihre Postkarte angekommen? Sehen Sie nach!
Zur Originalseite

Schwere Strahlen eines Schwarzen Lochs in 4U1630-47

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, CXC, M. Weiss

Beschreibung: Woraus bestehen die Strahlen eines Schwarzen Lochs? Viele Schwarze Löcher in Sternsystemen sind sicherlich von Scheiben aus Gas und Plasma umgeben, das durch Gravitation von einem nahe gelegenen Begleitstern eingesaugt wird. Ein Teil dieser Materie endet, nachdem sie sich dem Schwarzen Loch genähert hat, indem sie vom Sternsystem in Form mächtiger Strahlen ausgestoßen wird, die von den Polen des rotierenden Schwarzen Lochs ausströmen. Aktuelle Hinweise lassen den Schluss zu, dass diese Strahlen nicht nur aus Elektronen und Protonen bestehen, sondern auch die Kerne schwerer Elemente wie Eisen und Nickel enthalten. Die Entdeckung wurde im System 4U1630-47 gemacht, und zwar mithilfe einer kompakten, von CSIRO betriebenen Anordnung an Radioteleskopen im Osten Australiens sowie dem Satelliten XMM-Newton der Europäischen Weltraumorganisation in der Erdumlaufbahn. Das Sternsystem 4U1630-47 ist oben als künstlerische Illustration abgebildet, rechts steht ein großer blauer Stern, und von einem Schwarzen Loch im Zentrum der Akkretionsscheibe auf der linken Seite strömen Strahlen aus. Obwohl das Sternsystem 4U1630-47 vermutlich nur ein kleines, wenige Sonnenmassen schweres Schwarzes Loch enthält, könnten die Folgerungen aus diesen Ergebnissen größer sein: dass größere Schwarze Löcher ebenfalls Strahlen massereicher Kerne in den Kosmos ausstrahlen.

Klick in den Hyperraum: APOD-Zufallsgenerator
Zur Originalseite

Rotationsbeschleunigung eines massereichen Schwarzen Lochs

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrations-Credit: Robert Hurt, NASA/JPL-Caltech

Beschreibung: Wie schnell kann sich ein Schwarzes Loch drehen? Wenn sich ein Objekt aus normaler Materie zu schnell dreht, bricht es auseinander. Doch ein Schwarzes Loch sollte nicht auseinanderbrechen können – und seine maximale Rotationsgeschwindigkeit ist tatsächlich nicht bekannt. Theoretiker modellieren schnell rotierende Schwarze Löcher üblicherweise mit der Kerr-Metrik zu Einsteins Allgemeiner Relativitätstheorie, die mehrere überraschende und ungewöhnliche Dinge vorhersagt. Seine vielleicht am einfachsten nachprüfbare Prognose ist jedoch, dass Materie, die in ein mit maximaler Geschwindigkeit rotierendes Schwarzes Loch fällt, zuletzt zuletzt sichtbar sein sollte, wenn sie dieses annähernd mit Lichtgeschwindigkeit umkreist, wie man aus großer Entfernung beobachten kann. Diese Prognose wurde kürzlich von den Statelliten NuSTAR der NASA und XMM der ESA getestet, und zwar durch Beobachtung des sehr massereichen Schwarzen Lochs im Zentrum der Spiralgalaxie NGC 1365. Die Grenze nahe der Lichtgeschwindigkeit wurde bestätigt, indem man die Aufheizung und die Verbreiterung der Spektrallinien von Kernemissionen nahe dem inneren Rand der umgebenden Akkretionsscheibe vermaß. Oben zeigt eine künstlerische Illustration eine Akkretionsscheibe aus normaler Materie, die um ein Schwarzes Loch wirbelt, mit einem Strahl, der aus der Oberseite strömt. Da Materie, die zufällig in das Schwarze Loch fällt, die Rotation eines Schwarzen Lochs nicht so stark beschleunigen sollte, bestätigen die Messungen von NuSTAR und XMM auch die Existenz der umgebenden Akkretionsscheibe.

Zur Originalseite