Virtueller Flug über den Asteroiden Vesta


Bildcredit: NASA, JPL-Caltech, UCLA, MPS, DLR, IDA; Animation: Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Beschreibung: Wie wäre es, über den Asteroiden Vesta zu fliegen? Trickfilmspezialisten vom Deutsches Zentrum für Luft- und Raumfahrt erfasste aktuelle Bilder und Höhendaten mit der NASA-Mission Dawn, als diese vor einigen Jahren den Asteroiden Vesta besuchte, und produzierten einen virtuellen Film.

Dieses Video beginnt mit einem Abschnitt über Divalia Fossa, zwei ungewöhnlichen Tälern, die parallel über Gelände verlaufen, das stark von Kratern zerfurcht ist. Danach erforscht das virtuelle Raumschiff Vestas 60 km großen Krater Marcia und zeigt zahlreiche plastische Details. Zuletzt wurden die Dawn-Bilder digital höhenverstärkt, um Vestas 5 km hohen Berg Aricia Tholus besser zu zeigen.

Vesta, das zweitgrößte Objekt im Asteroidengürtel des Sonnensystems, ist der hellste Asteroid, der von der Erde aus sichtbar ist, man kann ihn mit einem Fernglas sehen. Mit Vesta Trek können Sie die ganze Vesta selbst erforschen.

Jeden 30. Juni: Heute ist Asteroid Day

Zur Originalseite

Live-Übertragung von der Internationalen Raumstation


Bildcredit: NASA, UStream, HDEV-Projekt

Beschreibung: Das könnten Sie sehen, wenn Sie jetzt über der Erde schweben würden. 2014 lieferte eine robotische SpaceXDragon-Kapsel , die Nachschub zur Internationale Raumstation (ISS) im Erdorbit brachte, die Kameras für die High Definition Earth Viewing (hochauflösende Erdbeobachtung, HDEV), diese filmen und senden Echtzeitansichten der Erde. Wenn es funktioniert, sehen Sie hier den Echtzeit-Videofeed, der zwischen vier Kameras wechselt, von denen jede anders ausgerichtet ist.

Beobachten Sie, wie weiße Wolken, braunes Land und blaue Ozeane vorbeiziehen. Diese Echtzeitansicht erscheint schwarz, wenn auf der Erde unten Nacht ist, doch der schnelle 90-Minuten-Umlauf der Raumstation verkürzt diese dunkle Zeit auf nur 45 Minuten. Den aktuellen Aufenthalt der ISS über der Erde finden Sie im Netz. Wenn das Video grau erscheint, wird entweder gerade auf eine andere Kamera umgeschaltet, oder die Kommunikation mit der ISS ist vorübergehend nicht verfügbar.

Im Zuge des HDEV-Projekts wird die Videoqualität überwacht, um herauszufinden, welche Wirkung die energiereiche Strahlung hat, welche Kameramodelle am besten funktionieren und welche Erdansichten am beliebtesten sind.

Zur Originalseite

Ausbruch einer Sonnenprotuberanz von SDO


Videocredit und -rechte: NASA/Goddard/SDO AIA Team

Beschreibung: Eine der spektakulärsten Sonnenansichten ist eine ausbrechende Protuberanz. 2011 filmte die Raumsonde Solar Dynamics Observatory der NASA im Sonnenorbit eine eindruckvolle große Protuberanz, die auf der Oberfläche ausbrach. Die dramatische Explosion in diesem Zeitraffervideo wurde in Ultraviolettlicht gefilmt. Das Video komprimiert 90 Minuten, wobei alle 24 Sekunden ein neues Bild aufgenommen wurde.

Die Protuberanz ist riesig – unter den fließenden Schleier aus heißem Gas würde die ganze Erde leicht hineinpassen. Eine Sonnenprotuberanz wird vom Magnetfeld der Sonne kanalisiert und manchmal über der Sonnenoberfläche gehalten. Eine ruhige Protuberanz bleibt typischerweise etwa einen Monat bestehen und kann als koronaler Massenauswurf (KMA) ausbrechen und heißes Gas ins Sonnensystem schleudern. Der Energie-Mechanismus, der eine Sonnenprotuberanz erzeugt, wird noch erforscht.

Wenn unsere Sonne das aktuelle Sonnenaktivitätsminimum passiert hat, treten in den nächsten Jahren Sonnenaktivitäten wie ausbrechende Protuberanzen voraussichtlich wieder häufiger auf.

Zur Originalseite

Planeten des Sonnensystems: Neigen und Drehen


Videocredit: NASA; Animation: James O’Donoghue (JAXA)

Beschreibung: Wie rotiert Ihr Lieblingsplanet? Dreht er sich schnell um eine fast vertikale Achse, oder waagrecht, oder rückwärts? Dieses Video animiert NASA-Bilder aller acht Planeten im Sonnensystem, sodass sie zum einfachen Vergleich Seite an Seite rotieren.

Im Zeitraffer-Video dauert ein Tag auf der Erde – eine Erdrotation – nur ein paar Sekunden. Jupiter dreht sich am schnellsten, während die Venus nicht nur am langsamsten (man sieht es?), sondern auch noch rückwärts rotiert. Die inneren Gesteinsplaneten (oben) erlebten in den frühen Tagen des Sonnensystems vermutlich dramatische Kollisionen, welche die Rotation änderten.

Die Gründe, warum sich Planeten so drehen und neigen, wie sie es tun, bleiben Gegenstand der Forschung, viele Erkenntnisse stammen von modernen Computersimulationen sowie jüngsten Entdeckungen und Analysen Hunderter Exoplaneten: Planeten, die um andere Sterne kreisen.

Zur Originalseite

Virtueller Vorbeiflug an der Strudelgalaxie


Videocredit: F. Summers, J. DePasquale und D. Player (STScI); Musik: Into the Wormhole (Jingle Punks via Youtube)

Beschreibung: Wie sieht es aus, wenn man über eine Spiralgalaxie fliegt? Um das zu visualisieren, berechneten Astronominnen und Trickfilmspezialisten am Space Telescope Science Institute aus Daten und Bildern vom Weltraumteleskop Hubble einen virtuellen Vorbeiflug an der Strudelgalaxie (M51). Die Strudelgalaxie ist nur 25 Millionen Lichtjahre entfernt und insgesamt 50.000 Lichtjahre groß. Sie ist eine der hellsten und malerischsten Galaxien am Himmel.

Beim virtuellen Vorbeiflug sind Spiralarme sichtbar, die von jungen blauen Sternen, älteren helleren Sternen, dunklen Staubbahnen und hellen roten Emissionsnebeln markiert sind. Viele weit entfernte Galaxien sind direkt durch M51 sichtbar. Die Visualisierung ist als Zeitraffer gedacht, weil sonst die Geschwindigkeit der virtuellen Kamera sehr nahe an der Lichtgeschwindigkeit liegen müsste.

Zur Originalseite

Der ganze Merkur


Bildcredit: NASA/JHU Applied Physics Lab/Carnegie Inst. Washington

Beschreibung: Vor erst sechs Jahren wurde endlich die ganze Oberfläche des Planeten Merkur kartiert. Gründliche Beobachtungen der ungewöhnlichen Kruste des innersten Planeten wurden robotisch durchgeführt – ab dem ersten Vorbeiflug der Raumsonde MESSENGER im Jahr 2008 bis zu ihrer kontrollierten Bruchlandung 2015. Davor war ein Großteil der Merkuroberfläche unbekannt, da sie für einen detaillierten Blick mit erdgebundenen Teleskopen zu weit entfernt ist, und die Mariner-10-Vorbeiflüge in den 1970er Jahren beobachteten nur etwa die Hälfte der Oberfläche.

Dieses Video ist ein Zusammenschnitt Tausender Merkurbilder, die in verstärkten Farben wiedergegeben wurden, um den Kontrast zwischen unterschiedlichen Oberflächenstrukturen besser zur Geltung zu bringen. Auf der rotierenden Welt entspringen Strahlen bei einem nördlichen Einschlag und breiten sich über einen Großteil des Planeten aus. Etwa zur Hälfte des Videos rotiert das helle Caloris-Becken ins Sichtfeld. Es ist eine nördliche urzeitliche Einschlagsstruktur, die sich mit Lava füllte. Aktuelle Untersuchungen der Daten von MESSENGER lassen vermuten, dass Merkurs innerer Kern fest ist.

Stöbern im Universum: Klicken Sie hier für ein zufällig gewähltes APOD

Zur Originalseite

Simulation: Zwei Schwarze Löcher verschmelzen


Simulationscredit: Simulating eXtreme Spacetimes Project

Beschreibung: Lehnen Sie sich zurück und beobachten Sie, wie zwei Schwarze Löcher verschmelzen. Dieses Simulationsvideo entstand nach der ersten direkten Entdeckung von Gravitationswellen im Jahr 2015. Es läuft in Zeitlupe und würde in Echtzeit ungefähr eine Drittelsekunde dauern.

Die Schwarzen Löcher posieren auf einer kosmischen Bühne vor Sternen, Gas und Staub. Ihre extreme Gravitation bricht das Licht von dahinter zu Einsteinringen, während sie sich einander auf spiralförmigen Bahnen nähern und schließlich verschmelzen. Durch die an sich unsichtbaren Gravitationswellen, die beim blitzartigen Verschmelzen der massereichen Objekte entstehen, plätschert und schwappt das sichtbare Bild innerhalb und außerhalb der Einsteinringe, sogar noch nachdem die Schwarzen Löcher verschmolzen sind.

Die von LIGO entdeckten Gravitationswellen werden als GW150914 bezeichnet, sie entsprechen der Verschmelzung Schwarzer Löcher mit 36 und 31 Sonnenmassen in einer Entfernung von 1,3 Milliarden Lichtjahren. Das finale einzelne Schwarze Loch besitzt 63 Sonnenmassen, wobei die übrigen 3 Sonnenmassen in Energie umgewandelt wurden, und zwar in Form von Gravitationswellen. Seit damals meldeten die LIGO– und VIRGO-Gravitationswellen-Observatorien mehrere weitere Entdeckungen verschmelzender massereicher Systeme, und letzte Woche das zeigte das Event Horizon Telescope das erste horizontgroße Bild eines Schwarzen Loches.

Zur Originalseite

Marsmond Phobos kreuzt die Sonne


Videocredit: NASA, JPL-Caltech, MSSS, Curiosity Rover

Beschreibung: Was zieht da vor der Sonne vorbei? Es sieht wie ein Mond aus, doch es kann nicht der Erdmond sein, weil es nicht rund ist. Es ist der Marsmond Phobos. Dieses Video wurde Ende letzten Monats vom Rover Curiosity auf der Marsoberfläche gefilmt. Der Durchmesser von Phobos beträgt 11,5 Kilometer, er ist somit 150 Mal kleiner als Luna (unser Mond), aber auch 50 Mal näher an seinem Planeten.

Phobos kommt dem Mars so nahe, dass er voraussichtlich in den nächsten 50 Millionen Jahren zerbrechen und auf den Mars stürzen wird. In nächster Zeit führt die niedrige Bahn von Phobos zu mehr schnellen Sonnenfinsternissen als auf der Erde. Dieses Video wurde beschleunigt – der Transit dauerte etwa 35 Sekunden. Ein ähnliches Video wurde vom kleineren und weiter entfernten Marsmond Deimos gefilmt, als er die Sonne überquerte. Der Videofilmer – der Roboterrover Curiosity – erforscht weiterhin den Krater Gale und in jüngster Zeit eine Region mit atemberaubenden Ansichten und ungewöhnlicher Felsen, die als Glen Torridon bezeichnet wird.

Rückschau: Frühere APODs vom 10. April.

Zur Originalseite

Annäherung an den Sternhaufen Terzan 5


Videocredit: Nick Risinger (skysurvey.org), DSS, Hubble, NASA, ESA, ESO; Musik: Johan B. Monell

Beschreibung: Kugelsternhaufen dominierten einst die Milchstraße. Vor langer Zeit, als unsere Galaxis entstand, durchstreiften möglicherweise Tausende Kugelsternhaufen unsere Milchstraße. Heute sind weniger als 200 übrig. Im Laufe der Äonen wurden viele Kugelsternhaufen durch wiederholte schicksalshafte Begegnungen untereinander oder mit dem Zentrum der Galaxis zerstört. Die verbleibenden Überreste sind älter als jedes Fossil auf der Erde, ja sogar älter als jede andere Struktur in unserer Galaxis, und sie begrenzen sogar das ungefähre Alter des Universums.

Wenn überhaupt, gibt es nur wenige junge Kugelsternhaufen in unserer Milchstraße, weil die Bedingungen für ihre Entstehung nicht günstig sind. Dieses Video zeigt, wie es aussehen könnte, wenn man von der Erde zum Kugelsternhaufen Terzan 5 reist. Am Ende ist ein Bild des Haufens dargestellt, das mit dem Weltraumteleskop Hubble aufgenommen wurde. Man fand heraus, dass dieser Sternhaufen nicht nur Sterne enthält, die in den frühen Tagen unserer Milchstraße entstanden sind, sondern auch – überraschenderweise – andere, die etwa 7 Milliarden Jahre später bei einem weiteren Sternbildungsausbruch entstanden sind.

Zur Originalseite

Äquinoktium auf dem Planeten Erde


Bildcredit: NASA, Meteosat, Robert Simmon

Beschreibung: Willkommen zur Tag- und Nachtgleiche auf dem Planeten Erde. Heute sind Tag und Nacht auf der ganzen Welt fast gleich lang – es ist der erste Frühlingstag auf der Nordhalbkugel unseres schönen Planeten und Herbstbeginn auf der Südhalbkugel. Zum Äquinoktium verläuft der Terminator der Erde – das ist die Trennlinie zwischen Tag und Nacht – vom Nord- zum Südpol des Planeten. Man sieht das am Beginn dieses interessanten Zeitraffervideos, das ein ganzes Jahr in 12 Sekunden komprimiert.

Für dieses Video zeichnete der Satellit Meteosat auf einer geosynchronen Bahn täglich zur selben Ortszeit Infrarotbilder auf. Das Video beginnt im September 2010 zur Tag- und Nachtgleiche, als der Terminator senkrecht ausgerichtet war. Während die Erde die Sonne umkreist, neigt sich der Terminator, sodass die Nordhalbkugel weniger Tageslicht erhält, bis sie bei der größten Neigung die Sonnenwende und den Winter auf der Nordhalbkugel erreicht. Während das Jahr fortschreitet, neigt sich der Terminator wieder zurück, und erreicht zur Hälfte des Videos im März 2011 das Äquinoktium. Dann schwingt der Terminator in die andere Richtung über die Vertikale hinaus, erreicht die Sonnenwende im Juni 2011 und den Beginn des nördlichen Sommers. Das Video endet bei der Rückkehr zum Septemberäquinoktium.

Zur Originalseite

Ostern fällt 2019 nicht auf den Sonntag nach dem Frühlingsvollmond

Landung auf dem Asteroiden Ryugu


Videocredit: JAXA

Beschreibung: Letzten Monat prallte ein Roboter der Menschheit von einem Asteroiden ab. Seine Hauptaufgabe war, eine Oberflächenprobe zu entnehmen. Trotz Schwierigkeiten bei der Suche nach einem sicheren Landeort, von dem die Sonde wieder abprallen konnte, landete Japans Roboter-Raumsonde Hayabusa2 erfolgreich auf dem Asteroiden Ryugu – und sprang gleich wieder hoch.

Vor dem Auftreffen schoss Hayabusa2 ein kleines Geschoss auf 162173 Ryugu, um Oberflächenmaterial zu versprengen und die Chance zu erhöhen, dass Hayabusa2 einiges davon aufgreifen könnte. Nächsten Monat feuert Hayabusa2 ein viel größeres Geschoss auf Ryugu ab, um etwas Material von unter der Oberfläche zu sammeln. Gegen Ende dieses Jahres soll Hayabusa2 von Ryugu aufbrechen, auf langgezogenen Schleifen zur Erde reisen und hoffentlich Ende 2020 kleine Teile dieses erdnahen Asteroiden zurückbringen.

Die Erforschung von Ryugu könnten der Menschheit nicht nur etwas über das Innere und die Oberfläche des Kleinplaneten verraten, sondern auch, welche Materialien im frühen Sonnensystem für die Entstehung von Leben verfügbar waren.

Zur Originalseite