Messier 109

Siehe Beschreibung. XXX Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Robert Eder

Die große, schöne Balkenspiralgalaxie Messier 109 ist der 109. Eintrag im berühmten Katalog heller Nebel und Sternhaufen von Charles Messier. Sie befindet sich direkt unterhalb der Schale des Großen Wagens im nördlichen Sternbild Großer Bär (Ursa Major).

Der helle Stern Phecda (Gamma Ursae Majoris) verursacht das helle Leuchten in der oberen rechten Ecke dieses teleskopischen Bildausschnitts. Der markante zentrale Balken von M109 verleiht der Galaxie das Aussehen des griechischen Buchstabens „Theta“ (θ), einem in der Mathematik häufig verwendeten Symbol für einen Winkel.

Obwohl M109 am Himmel der Erde nur einen sehr kleinen Winkel einnimmt (etwa 7 Bogenminuten oder 0,12 Grad), entspricht dieser geringe Winkel in Wirklichkeit einem enormen Durchmesser von etwa 120.000 Lichtjahren bei einer geschätzten Entfernung von 60 Millionen Lichtjahren.

M109 (auch bekannt als NGC 3992) ist das hellste Mitglied des mittlerweile anerkannten Galaxienhaufens im Großen Bären (Ursa Major-Galaxienhaufen). In der Aufnahme sind auch einige helle Vordergrundsterne mit spitzen Strahlen zu sehen. Außerdem erscheinen drei kleine, verschwommene, bläuliche Galaxien, die von oben nach unten als UGC 6969, UGC 6940 und UGC 6923 bezeichnet wurden. Sie sind möglicherweise Satellitengalaxien der größeren Balkenspiralgalaxie Messier 109.

Zur Originalseite

Der Möwen-Nebel

Eine rötliche Nebelwolke vor einem Sternenhintergrund mit weiteren bräunlichen Nebeln. Die rötliche Wolke erinnert in der Form an eine fliegende Möwe mit ausgebreiteten Flügeln. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Timothy Martin

Das ist eine Wolke aus leuchtendem Gas und verdunkelndem Staub zwischen den Sternen. Für Astronom*innen auf der Erde sieht sie aus wie ein Vogel. Sie trägt deshalb den Namen „Möwen-Nebel“.

Dieses Breitbandbild des kosmischen Vogels zeigt einen 3,5 Grad breiten Streifen der Milchstraße. Dieser befindet sich ungefähr in Richtung des Sirius, dem hellsten Stern im Sternbild Großer Hund. Der helle Kopf des Möwennebels ist trägt die Katalogbezeichnung IC 2177. Er ist ein kompakter, staubiger Emissions- und Reflexionsnebel mit dem eingebetteten massereichen Stern HD 53367.

Die gesamte Emissionsregion besteht aus Objekten mit anderen Katalogbezeichnungen. Er ist wahrscheinlich Teil einer ausgedehnten Hüllenstruktur und durch aufeinanderfolgende Supernova-Explosionen entstanden.

Der auffällige bläuliche Bogen rechts unterhalb der Mitte ist die Bugstoßwelle des Ausreißer-Sterns FN Canis Majoris.

Dieser Komplex aus Sternen der Canis Majoris OB1-Gruppe und interstellaren Gas- und Staubwolken leuchtet rötlich im Licht des angeregten Wasserstoffs. Er erstreckt sich über eine Größe von 200 Lichtjahren und befindet ist rund 3800 Lichtjahre von uns entfernt.

Zur Originalseite

Rubins erster Blick: Sternenlandschaft im Schützen

Dieses erste Bild des Vera-C.-Rubin-Observatoriums zeigt einen Ausschnitt im Sternbild Schütze mit dem Lagunen- und dem Trifidnebel. Das Bild ist sehr detailreich und zeigt viele kleine Nebel.

Bildcredit und Lizenz: NSF–DOE Vera-C.-Rubin-Observatorium

Diese interstellare Himmelslandschaft ist ein 4 Grad großes, prall gefülltes Sternenfeld in Richtung des Zentrums der Milchstraße. Es ist eines der ersten Bilder des neuen Vera-C.-Rubin-Observatoriums. Die hellen Nebel und Sternhaufen im Bild sind begehrte Halte auf Teleskoptouren am Himmel: Messier 8 und Messier 20.

Messier 8 wird auch der Lagunennebel genannt. Er ist eine gigantische Sternentstehungsregion mit über 100 Lichtjahren im Durchmesser. M8 ist etwa 4000 Lichtjahre von uns entfernt. Er enthält einen außergewöhnlichen Sternhaufen voll mit jungen und massereichen Sternen. Ihre starke Strahlung und ihre Sternwinde mischen den Nebel ordentlich durch und regen ihn zum Leuchten an.

Messier 20 trägt den Spitznamen Trifidnebel, weil er von dunklen Staubbändern in drei Teile geteilt wird. Sein rotes Leuchten entsteht durch leuchtenden Wasserstoff. Die blauen Farbtöne stammen von reflektiertem Sternenlicht.

Das Rubin-Observatorium nahm das Bild in den Nächten von 1.-4. Mai auf. In seiner vollen Auflösung ist die prachtvolle Sternenlandschaft im Schützen 84.000 Pixel breit und 51.500 Pixel hoch.

Zur Originalseite

Das Zentrum der Spiralgalaxie M61

Die Galaxie M61 oder NGC 4303 im Virgo-Galaxienhaufen ist direkt von oben sichtbar. Es wirkt, als wäre innen eine eigene kleine Spiralgalaxie. Außen herum verlaufen ausschweifende Spiralarme mit blauen Sternhaufen und rosaroten Sternbildungsgebieten.

Bildcredit: NASA, ESA, Hubble, ESO; Bearbeitung und Bildrechte: Robert Gendler

Befindet sich hier tatsächlich eine Spiralgalaxie in der Mitte einer Spiralgalaxie? Nun, fast! Dieses detaillierte Porträt entstand aus Aufnahmen des Weltraumteleskops Hubble, der Europäischen Südsternwarte und etlicher kleiner Teleskope auf der Erde. Es zeigt die Spiralgalaxie Messier 61 (M61), wir sehen sie direkt von oben. Auffallend ist das helle Zentrum der Galaxie. M61 ist astronomisch gesehen schon fast nahe. Sie ist lediglich 55 Millionen Lichtjahre von uns entfernt und befindet sich im Virgo-Galaxienhaufen. Eine andere Bezeichnung ist NGC 4303.

M61 ist ein Beispiel für eine Balkenspiralgalaxie, ähnlich wie unsere Galaxis, die Milchstraße. Die Galaxie zeigt die üblichen Spiralarme, die vom Zentrum auslaufen, kosmischen Staub, rosarote Regionen mit Sternbildung und junge blaue Sternhaufen.

Der Kern der Galaxie enthält ein aktives, sehr massereiches Schwarzes Loch. Es ist von einer hellen spiralförmigen Struktur umgeben. Die Materie in dieser Gegend bewegt sich zum Zentrum hin. Durch die Sternentstehung, die hier angeregt wird, erscheint diese Gegend wie eine eigene, separate Spiralgalaxie.

Zur Originalseite

W5: Säulen der Sternbildung

Der Nebel im Bild wurde in Infrarotlicht abgebildet und wirkt daher verfremdet. Mittig ist eine höhlenartige Struktur, deren Form an ein Herz erinnert. Sie wird von braunweißen Nebelfetzen begrenzt. Es ist der Sternbildungskopplex W5 im Sternbild Kassiopeia.

Bildcredit: NASA, WISE, IRSA; Bearbeitung und Bildrechte: Francesco Antonucci

Woher kommen Sterne? Bilder von Regionen, in denen Sterne entstehen, wurden mit der Infrarotkamera des Wide Field Infrared Survey Explorer (WISE, später NEOWISE) der NASA aufgenommen. Diese Aufnahmen sollen helfen, das Rätsel zu lösen. Dieses Beispiel zeigt die Region W5. Massereiche Sterne befinden sich im Zentrum von Hohlräumen in Gas- und Staubnebeln. Sie sind älter als Sterne am Rand dieser Hohlräume.

Eine mögliche Ursache für den Altersunterschied liegt darin, dass die massereichen Sterne im Zentrum die Entstehung weiterer Sterne verursachen. Diese forcierte Sternentstehung findet dann statt, wenn heißes Gas aus dem Inneren das kühlere Gas der umgebenden Wolke zu dichten Knoten zusammendrückt. Diese Knoten werden schließlich so dicht, dass sie unter der Schwerkraft zu Sternen kollabieren.

Dieses Bild, dessen Farben wissenschaftlich begründet sind, zeigt spektakuläre Säulen, die langsam durch das Entweichen von heißem Gas verdampfen. W5 ist auch als Westerhout 5 oder IC 1848 bekannt. Zusammen mit dem Nebel IC 1805 bildet W5 eine komplexe Region mit Sternentstehung. Sie wird gemeinhin auch Herz- und Seelennebel genannt. Im Bild sieht man einen Teil von W5. Er reicht über etwa 2000 Lichtjahre und enthält viele Säulen, in denen Sterne entstehen. Der Nebel ist 6500 Lichtjahre von uns entfernt und liegt im Sternbild Kassiopeia.

Zur Originalseite

Beerenschale mit Mars-Kügelchen

Mitten im Bild ist ein großer, rotbrauner Stein. Rechts liegen viele "Blaubeeren" in einer Senke, links daneben nahm der Rover Opportunity eine runde Probe. Außen um den Stein ist dunkles Fugenmaterial zwischen weiteren hellen Steinen verteilt, auf dem viele Blaubeeren liegen.

Bildcredit: NASA, JPL, Rover Curiosity

Wie entstanden diese ungewöhnlichen Mars-Kügelchen? Im Jahr 2004 entdeckte der Marsrover Opportunity Tausende ungewöhnlicher grauer Kugeln. Sie bestehen aus Eisen und Gestein. Wegen ihres Aussehens erhielten sie den Spitznamen „Blaubeeren„. Diese Kügelchen sind in und um Gesteine nahe der Landestelle des Rovers verteilt.

Man wollte ihrer Entstehung auf die Spur kommen. Opportunity stieß auf eine Vertiefung, die „Berry Bowl“ genannt wurde. In diesem Bereich war eine besonders hohe Konzentration dieser Mars-Kügelchen. Diese Aufnahme entstand am 48. Marstag der Mission. Durchschnittlich ist so eine Mars-„Blaubeere“ nur etwa 4 mm groß.

Opportunity analysierte die kreisförmige Fläche, die man links neben dem dichtesten Vorkommen der Kügelchen sieht. So konnte man nachweisen, dass das Gestein darunter ganz anders zusammengesetzt ist als die hämatitreichen Blaubeeren. Diese Erkenntnisse untermauern eine Annahme, die inzwischen weit verbreit ist. Sie besagt, dass die kleinen, rätselhaften grauen Kugeln im Laufe der Zeit durch die Ablagerung aus einem schmutzigen Wasserbad entstanden sind.

APOD wird 30! Kostenloser Vortrag in Cork, Irland, am Di., 24. Juni, 19h

Zur Originalseite

Zwei Welten, zwei Analemmata

Die Sonne zieht Schleifen am Himmel, wenn man sie täglich zur selben Uhrzeit fotografiert. Diese Schleife nennt man Analemma. Die Form der Schleife hängt jedoch vom Himmelskörper ab. Die linke Schleife wurde auf der Erde fotografiert, die rechte Kurve in Form einer Träne stammt vom Mars.

Bildcredit: Links: Bildrechte Tunc Tezel (TWAN); Rechts: NASA/JPL/Cornell/ASU/TAMU

Wenn man ein Jahr lang jeden Tag zur selben Zeit die Position der Sonne am Himmel aufzeichnet, erhält man diese Kurve in Form einer Acht. Sie wird Analemma genannt.

Das Analemma links entstand als Kombination von Weitwinkel-Digitalkamerabildern, die von Dezember 2011 bis Dezember 2012 auf der Erde fotografiert wurden. Die Form eines Analemmas hängt jedoch davon ab, wie exzentrisch die Umlaufbahn eines Planeten ist und wie stark seine Rotationsachse geneigt ist. Daher können Analemma-Kurven für verschiedene Welten unterschiedlich aussehen.

Nehmen wir zum Beispiel den Mars: Die Achsenneigung des Roten Planeten ähnelt jener der Erde. Doch seine Umlaufbahn um die Sonne ist exzentrischer als die der Erde. Sie weicht also stärker von einem Kreis ab. Das Analemma rechts von der Marsoberfläche aus gesehen ähnelt deshalb einer Träne. Der Bilder stammen vom Marsrover Opportunity. Sie decken das Marsjahr ab, das den Erdmonaten Juli 2006 bis Juni 2008 entspricht.

Die Sonnenwendpunkte jeder Welt liegen immer am oberen und unteren Ende ihrer jeweiligen Analemma-Kurven. Die letzte Sommersonnenwende auf dem Mars war am 29. Mai 2025. Die Sommersonnenwende auf unserem schönen Planeten war am 21. Juni um 2:42 Weltzeit (4:42 MESZ).

Zur Originalseite

Die große Mondwende 2024–2025

Die Panoramabilder wurden in der kanadischen Stadt Edmonton fotografiert. Sie zeigen die Aufgänge des Vollmondes und zeitgleich der Sonne im Zeitraum der Großen Mondwende.

Bildcredit und Bildrechte: Luca Vanzella, Alister Ling

Dieser Stapel besteht aus monatlich aufgenommenen Panoramabildern von Edmonton im kanadischen Alberta. Die Zeitreihe verläuft senkrecht von oben nach unten. Das ehrgeizige Fotoprojekt folgt dem jährlichen Nord-Süd-Schwenk der Sonnenaufgangspunkte. Oben links geht es los. Es reicht von der Juni-Sonnenwende zur Dezember-Sonnenwende und wieder zurück.

Daneben ist der Aufgang des Vollmondes dargestellt. Man kann ihm deutlich schwieriger folgen. Natürlich verläuft der Nord-Süd-Schwenk bei Mondaufgang entgegengesetzt zum Sonnenaufgang am Horizont. Doch diese aufgehenden Vollmonde reichen auch über einen breiteren Bereich am Horizont als die Sonnenaufgänge. Das gut geplante Projekt deckt nämlich den Zeitraum von Juni 2024 bis Juni 2025 ab. In dieser Zeit fand eine große Mondwende statt. Dieses Video zeigt die Details.

Große Mondwenden stellen die Extreme im Nord-Süd-Bereich des Mondaufgangs dar. Er wird durch die 18,6-jährige Präzession der Mondbahn bestimmt.

Zur Originalseite