Sternbildungsregion Adlernebel ohne Sterne

Der Adlernebel, auch M16, ist eine Sternfabrik im Sternbild Schlange.

Bildcredit und Bildrechte: Yannick Akar

Das Ganze sieht aus wie ein Adler. Doch ein genauer Blick auf das Zentrum des Adlernebels zeigt, dass die hellen Regionen eigentlich ein Fenster ins Innere einer größeren, dunklen Staubhülle ist. Durch dieses Fenster seht ihr eine hell erleuchtete Werkstatt, wo ein ganzer offener Sternhaufen entsteht.

In dieser Höhlung bleiben riesige Säulen und runde Globulen aus dunklem Staub und kaltem molekularem Gas zurück, wo immer noch Sterne entstehen. Paradoxerweise erkennt man diese eindrucksvolle Sternbildungsfabrik vielleicht besser, wenn man sie ohne ihre Sterne sieht, daher wurden die Sterne auf diesem Bild digital entfernt.

Der Adler-Emissionsnebel wird auch als M16 bezeichnet. Er ist etwa 6500 Lichtjahre entfernt, umfasst ungefähr 20 Lichtjahre und ist mit Fernglas im Sternbild Schlange (Serpens) zu sehen. Mehr als 22 Stunden Belichtungszeit waren für die Erstellung dieses Bildes nötig. Dazu wurden Farben kombiniert, die von Wasserstoff (rot) und Sauerstoff (blau) abgestrahlt werden.

Zur Originalseite

Die Raumsonde Juno zeigt Jupiter Mond Europa

Jonos Blick auf den Jupitermond Europa.

Bildcredit und Lizenz: NASA, JPL-Caltech, SwRI, MSSS; Bearbeitung: Andrea Luck

Welche Rätsel könnten gelöst werden, wenn man in diese Kristallkugel schaut? In diesem Fall ist die Kugel eigentlich ein Jupitermond, das Kristall ist Eis und der Mond ist nicht nur schmutzig, sondern auch irreparabel brüchig. Doch es gibt Vermutungen, dass es unter Europas rissigen Eisebenen Ozeane gibt, die vielleicht Leben enthalten.

Europa ist ungefähr so groß wie der Erdmond. Dieses Bild wurde vor wenigen Tagen aufgenommen, als die Roboter-Raumsonde Juno im Jupiterorbit weniger als 325 Kilometer von ihrer zerklüfteten und veränderlichen Oberfläche entfernt vorbeiflog. Man vermutet Ozeane unter der Oberfläche, weil Europa in Jupiters veränderlichem gravitativem Einfluss auf seiner leicht elliptischen Bahn global durchgewalkt wird. Dadurch wird Europas Inneres erwärmt.

Untersuchungen von Junos Nahaufnahmen könnten der Menschheit helfen, nicht nur Europa und das frühe Sonnensystem besser zu verstehen, sondern auch die Möglichkeit, dass Leben anderswo im Universum existiert.

Zur Originalseite

Supernova-Kanone stößt Pulsar J0002 aus

Die Illustration zeigt einen Supernova-Überrest mit einer Linie, die sich nach rechts unten erstreckt und die Spur eines Neutronensterns darstellt.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Kanadische Vermessung der galaktischen Ebene (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Was kann einen Neutronenstern wie eine Kanonenkugel hinausschießen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebeligen Überrest CTB 1 erzeugte, nicht nur einen massereichen Stern, sondern schleuderte außerdem den neu entstandenen Neutronensternkern – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7 Mal pro Sekunde. Er wurde mithilfe der zum Download angebotenen Software Einstein@Home entdeckt. Diese Software durchsucht die Daten des Gammastrahlenobservatoriums Fermi der NASA im Weltraum.

Der Pulsar PSR J0002+6216 (kurz J0002) rast mit mehr als 1000 km pro Sekunde durchs All. Er hat den Supernovaüberrest CTB 1 bereits hinter sich und ist sogar schnell genug, um die Galaxis zu verlassen. Auf diesem Bild ist die Spur des Pulsars gut erkennbar, sie führt vom Supernovaüberrest nach links unten.

Das Bild ist eine Kombination aus Radiobildern der Radioobservatorien VLA und DRAO sowie Archivdaten des Infrarot-Weltraumobservatoriums IRAS der NASA. Wir wissen, dass Supernovae wie Kanonen agieren können, und auch, dass sich Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das zustande bringen.

Zur Originalseite

Lunations-Matrix

Diese Matrix zeigt die Mondphasen vom 29. Juli bis 26. August während einer Lunation

Bildcredit und Bildrechte: Tunc Tezel (TWAN)

Wenn ihr jede Nacht den Mond beobachtet, seht ihr, wie sich seine sonnenbeleuchtete Seite allmählich verändert. Ein Mondzyklus oder eine Lunation verläuft in Phasen von Neumond zu Vollmond und wieder zu Neumond und dauert etwa 29,5 Tage.

Diese Matrix aus 7×4 Teleskopbildern zeigt von links oben nach rechts unten die Mondphasen in 28 aufeinanderfolgenden Nächten. Sie wurden vom Abend des 29. Juli bis zum Morgen des 26. August aufgenommen und folgen einer fast vollständigen Lunation. Etwa 24 Stunden nach und vor Neumond wurde kein Bild aufgenommen. Der Mond ist zu dieser Zeit höchstens eine schmale Sichel nahe an der Sonne, die wirklich schwierig zu beobachten ist.

Um einen weitgehend klaren Mittelmeerhimmel zu finden und dieses Mondzyklusprojekt zu vollenden, war gelegentlich eine Fahrt mit dem Auto nötig. Der erste Teil der Lunation wurde am frühen Abend fotografiert, die zweite Teil spätabends oder am frühen Morgen. Da alle Bilder im gleichen Maßstab aufgenommen wurden, könnt ihr anhand dieser Matrix die Änderung der scheinbaren Mondgröße während einer Lunation verfolgen. Wer die Mondphase findet, die dem Perigäum am nächsten kommt, erhält einen Bonus.

Heute: Internationale Mondbeobachtungsnacht
DE: Astronomietag
Zur Originalseite

Sonnenaufgänge zur Tagundnachtgleiche in aller Welt

Das Bildraster zeigt 24 Sonnenaufgänge, jeder davon wurde in einer anderen nautischen Zeitzone fotografiert.

Bildcredit der Arbeitsgemeinschaft: Chris Pegman, Ian Griffin, Lucy Yunxi Hu, Kwon O Chul, John Goldsmith, Jeff Dai, Soumyadeep Mukherjee, Neelam und Ajay Talwar, Awais Ahmed, Toky Sariaka, Zaid M. Al-Abbadi, Loredana Gentile, Chris Finlay, Si Rowland Romualdo Farias, Egon Filter, Jason Dain, Alexis Trigo, Corey Roberts, Tehno Tuomi, Luca Vanzella, Sean Neilson, Rob Ratkowski, Steven Percival

In einer planetenweiten Zusammenarbeit entstand diese interessante Anordnung von Sonnenaufgangsfotos, alle wurden um die Tagundnachtgleiche im September 2022 aufgenommen. Die Bilder stammen von 24 Fotografen, jeder befand sich in einer der 24 nautischen Zeitzonen der Welt.

Anders als die komplexen zivilen Grenzen der Zeitzonen sind die 24 nautischen Zeitzonen einfach 15 Grad breite Längenbänder, die je einer Stunde entsprechen und den Planeten umspannen. Rechts oben befindet sich das erste Sonnenaufgangsbild in der nautischen Zeitzone, die der koordinierten Weltzeit (UTC) +12 Stunden entspricht. Der Fotograf in dieser Zeitzone befand sich im neuseeländischen Christchurch.

Nach Westen gelangt ihr, indem ihr in der Spalte nach unten geht und dann für spätere Sonnenaufgänge zur nächsten Spalte nach links, da die Zeitzonenverschiebung in Stunden von UTC abnimmt.

Hier seht ihr ein Video der Sonnenaufgänge zum Äquinoktium im September 2022 aus aller Welt.

Hinweis der Übersetzerin: bis 5. Oktober erscheinen die Übersetzungen unregelmäßig, die fehlenden werden nachgetragen.

Zur Originalseite

DART-Einschlag auf einem Asteroiden im Weltraum

Der italienische LICIACube wurde vor dem Einschlag von DART auf dem Asteroiden Didymos ausgesetzt. Er schickte dieses Bild von der Trümmerwolke zur Erde, das kurz nach dem Einschlag entstand.

Bildcredit: ASI / NASA

Fünfzehn Tage vor dem Einschlag entlud die Raumsonde DART einen kleinen Begleitsatelliten, um die historische Demonstration einer planetaren Verteidigungstechnik zu dokumentieren. Der Light Italian CubeSat for Imaging Asteroids aka LICIACube wurde von der italienischen Weltraumagentur zur Verfügung gestellt und nahm dieses Bild vom Nachleuchten des Einschlags auf.

Am rechten Bildrand seht ihr eine Auswurfwolke, die wenige Minuten nach dem Einschlag von DART entstand, bei dem der Asteroid Dimorphos getroffen wurde. LICIACube war zu dieser Zeit etwa 80 Kilometer entfernt.

Der 160 Meter große Dimorphos ist derzeit etwa 11 Millionen Kilometer von der Erde entfernt. Er ist ein Minimond, der um den 780 Meter großen Asteroiden Didymos kreist. Didymos ist auf dem LICIACube-Bild abseits der Mitte zu sehen.

In den kommenden Wochen halten bodenbasierende Teleskopbeobachtungen Ausschau nach kleinen Bahnänderungen bei Dimorphos um Didymos, um herauszufinden, wie stark der DART-Einschlag sein Ziel abgelenkt hat.

Zur Originalseite

Stürmischer Himmel über dem Mount Shasta

Das Bild zeigt den schneebedeckten Berg Mount Shasta in Kalifornien und im Hintergrund links die Milchstraße und rechts das farbige Sternenfeld des Sternbilds Ophiochus.

Bildcredit und Bildrechte: Ralf Rohner

Ist der Himmel böse auf den Mount Shasta? In alten Legenden kämpfen dort die Geister der oberen und der unteren Welten, manchmal sogar sehr aktiv, nämlich bei Ausbrüchen dieses gewaltigen Vulkans in Kalifornien in den USA.

Auf diesem detailreichen Himmelsbild von Ende Juni kann man sich so ein Drama gut vorstellen. Über dem schneebedeckten Gipfel steigt links das zentrale Band unserer Milchstraße auf, rechts oben seht ihr einen malerischen Himmel mit den modernen Sternbildern Skorpion und Schlangenträger. Der helle orangefarbene Stern Antares und der farbenprächtige Rho-Ophiuchi-Wolkenkomplex leuchten rechts neben Mount Shasta. Der rote Emissionsnebel um den Stern Zeta Ophiuchi steht rechts oben.

Das statische Bild der Erde im Kompositbild wurde während der Blauen Stunde fotografiert. Ein zweiteiliges Panorama, das den Himmelshintergrund zeigt, wurde später in derselben Nacht mit derselben Kamera am selben Ort aufgenommen.

In ein paar Millionen Jahren werden Antares, einige Sterne im Rho-Ophiuchi-System und Zeta Ophiuchi wahrscheinlich als Supernovae explodieren.

Zur Originalseite

DART: Einschlag auf dem Asteroiden Dimorphos

Videocredit: NASA, JHUAPL, DART

Könnte die Menschheit einen Asteroiden ablenken, der Kurs auf die Erde nimmt? Ja. Gefährliche Einschläge großer Asteroiden gab es in der Vergangenheit der Erde schon öfter, manchmal führten sie zu Massensterben von Lebewesen.

Um die Erde vor einigen möglichen künftigen Einschlägen zu schützen, testete die NASA gestern einen neuen planetaren Schutzmechanismus, indem sie die Roboter-Raumsonde Double Asteroid Redirection Test (DART) auf Dimorphos stürzen ließ. Dimorphos ist ein kleiner, etwa 170 Meter großer Asteroid.

Wie dieses Video zeigt, war der Einschlag erfolgreich. Im Idealfall kann sogar der Stoß einer kleinen Raumsonde einen großen Asteroiden so weit ablenken, sodass er die Erde verfehlt, wenn die Sonde früh genug einschlägt. Das Zeitraffervideo zeigt, wie DART zuerst an größeren Didymos (links) vorbeifliegt und sich dann dem kleineren Asteroiden Dimorphos nähert.

Das Video endet abrupt mit dem Aufprall von DART, doch die Beobachtungen der veränderten Bahn des Asteroiden Dimorphos mit Raumsonden und Teleskopen auf der ganzen Erde haben bereits begonnen.

Zur Originalseite