Spiel: Super Planet Crash

Link zum Spiel: stefanom.org

Spielrechte und BY-NC-ND CC Lizenz: Stefano Meschiari (U. Texas in Austin) und das SAVE/Point-Team

Könnt ihr ein Planetensystem bilden, das 500 Jahre bestehen bleibt? Dieses Spiel Super Planet Crash macht es möglich, das zu probieren. Klickt einfach in der Nähe des Zentralsterns, dann könnt ihr bis zu zehn Planeten einfügen. Links wählt ihr – nach Masse sortiert – die Art der Planeten: Erde, Supererde, Eisriese, Gasplanet, Brauner Zwerg oder Zwergstern.

Jeder Planet wird nicht nur von der Gravitation des sonnenähnlichen Zentralsterns angezogen, sondern auch von den anderen Planeten. Ihr bekommt Punkte und Boni für dichtere und bewohnbare Systeme. Das Spiel endet nach 500 Jahren oder wenn ein Planet durch Gravitation hinausgeschleudert wird.

In den letzten Jahren wurden viele Exoplanetensysteme entdeckt. Super Planet Crash zeigt, warum manche stabil bleiben. Wenn ihr einige Male Super Planet Crash gespielt habt, könnt ihr euch vielleicht vorstellen, dass unser Sonnensystem nach seiner Entstehung möglicherweise Planeten verloren hat.

Zur Originalseite

Kataklysmische Dämmerung

Hinter einem Gewässer, auf das man aus einer Höhle hinausblickt, strahlt am Horizont ein energiereiches Gebilde, das den Himmel rot färbt. Ein Strahl reicht nach oben zu einer Akkretionsscheibe. Links und rechts von dem Strahl sind die Sicheln von Himmelskörpern zu sehen.

Illustrationscredit und Bildrechte: Mark A. Garlick (Space-art.co.uk)

Bringt diese Dämmerung eine neue Nova? Das überlegen vielleicht Menschen in der Zukunft, wenn sie auf einem Planeten in einem kataklysmisch veränderlichen Doppelsternsystem leben.

Bei kataklysmischen Veränderlichen fließt Gas von einem großen Stern in eine Akkretionsscheibe, die um einen massereichen, kompakten weißen Zwergstern kreist. Wenn ein Klumpen Gas in der Akkretionsscheibe über eine gewisse Temperatur erhitzt wird, können explosive kataklysmische Ereignisse wie eine Zwergnova stattfinden. Dabei fällt der Klumpen schneller auf den Weißen Zwerg und landet mit einem hellen Blitz.

Eine Zwergnova zerstört keinen der beide Sterne. Zwergnovae können in unregelmäßigen Zeitabständen stattfinden. Das können wenige Tagen bis zu zehn Jahre sein. So eine Nova setzt weniger Energie frei als eine Supernova.

Doch wenn wiederholte Novae nicht heftig genug sind, um mehr Gas auszustoßen, als von außen einfällt, sammelt sich Materie auf dem Weißen Zwergstern an. Schließlich überschreitet der Weiße Zwerg die Chandrasekhargrenze. Dann bietet eine Höhle wie jene im Vordergrund wohl wenig Schutz, denn der ganze Weiße Zwerg explodiert als gewaltige Supernova.

Zur Originalseite

Der Windmühlenmond

Auf einem Hang steht eine alte Windmühle in der Dämmerung, der Himmel dahinter ist dunkel und graublau. Hinten links geht der Vollmond auf.

Bildcredit und Bildrechte: Babak Tafreshi (TWAN)

Auf der Kanarischen Insel Fuerteventura ging bei Sonnenuntergang ein heller Vollmond auf. Es war der erste Vollmond im neuen Jahre. Er erreichte seine volle Phase in der Nacht vom 4. auf den 5. Jänner, und er war der erste nach der Dezember-Sonnenwende. In Nordamerika ist der erste Vollmond im Jänner der Wolfsmond.

Doch dieser Vollmond ging in der Dämmerung über einer windgepeitschten Insel mit traditionellen Windmühlen auf. Er verdient einen anderen Namen. Die Nahaufnahme wurde weit von der Windmühle im Vordergrund entfernt fotografiert. Sie zeigt einen faszinierenden scheinbaren Größenvergleich zwischen Windmühle und Vollmond.

Zur Originalseite

In den Armen von NGC 1097

Die Spiralgalaxie mitten im Bild hat einen sehr ausgeprägten Balken, von dem zwei markante Spiralarme ausgehen. Links unten ist eine kleine Galaxie. Vier kaum sichtbare Sternströme entspringen dem Zentrum der Galaxie, sie bilden ein X.

Bildcredit und Bildrechte: Steve Mazlin, Jack Harvey, Jose Joaquin Perez; SSRO-South am PROMPT/CTIO

Die Spiralgalaxie NGC 1097 leuchtet etwa 45 Millionen Lichtjahre entfernt am südlichen Himmel im chemischen Sternbild Fornax. Ihre blauen Spiralarme sind im farbigen Galaxienporträt von rosigen Sternbildungsregionen gesäumt. Sie winden sich scheinbar um eine kleine Begleitgalaxie links unter der Mitte. Diese ist etwa 40.000 Lichtjahre vom hellen Kern der Spirale entfernt.

Doch das ist nicht das einzige Besondere an NGC 1097. Die sehr detailreiche Aufnahme zeigt Hinweise auf zarte, rätselhafte Strahlen. Am leichtesten erkennt man einen, der neben den bläulichen Armen weit nach links reicht.

Vier blasse Strahlen entdeckte man auf Bildern von NGC 1097 im sichtbaren Licht. Sie bilden ein X, der Galaxienkern liegt in der Mitte. Doch vielleicht entspringen die Strahlen nicht dort. Sie könnten auch fossile Sternströme sein. Das sind Spuren, die beim Einfangen und Zerreißen einer viel kleineren Galaxie vor langer Zeit übrig sind.

NGC 1097 ist eine Seyfertgalaxie. Ihr Kern enthält auch ein sehr massereiches Schwarzes Loch.

Zur Originalseite

Sterne und Staub in der Südlichen Krone

Im Bild sind ausschweifende blaue Reflexionsnebel im Sternbild Corona Australis. In der Molekülwolke entstehen Sterne, sie erzeugen die Herbig-Hafo-Objekte im Bild.

Bildcredit und Bildrechte: CHART32, BearbeitungJohannes Schedler

Dieser Teleskopblick an der nördlichen Grenze der Südlichen Krone (Corona Australis) ist voller kosmischer Staubwolken und junger, energiereicher Sterne. Sie sind weniger als 500 Lichtjahre entfernt. Die Staubwolken verdecken das Licht von Sternen in der Milchstraße, die dahinter liegen.

Die Reflexionsnebel sind als NGC 6726, 6727 und IC 4812 katalogisiert. Der auffällige Komplex hat eine markante blaue Farbe. Sie entsteht, wenn kosmischer Staub das Licht der jungen, heißen Sterne in der Region reflektiert. Der Staub verdeckt auch Sterne, die gerade erst entstehen.

Links biegt sich der kleine, gelbliche Nebel NGC 6729 um den jungen veränderlichen Stern R Coronae Australis. Die leuchtenden Bögen und Schleifen darunter bestehen aus Gas, das von den Ausströmungen der eingebetteten jungen Sterne komprimiert wurde. Es sind Herbig-Haro-Objekte.

Am Himmel ist dieses Sichtfeld etwa 1 Grad. Das sind in der geschätzten Entfernung der nahen Sternbildungsregion fast 9 Lichtjahre.

Zur Originalseite

25 Jahre Hubble: Die Säulen der Schöpfung

Dunkelbraun ragen die Säulen der Sternbildung im Adlernebel M16 im Sternbild Schlange auf. Dieses Hubble-Bild zeigt sie von einem cyanfarben leuchtenden Schein umgeben, der Nebel im Hintergrund leuchtet zartblau.

Bildcredit: NASA, ESA und das Hubble-Vermächtnisteam (STScI / AURA)

Seit 25 Jahren (1990-2015) wird das Universum im niedrigen Erdorbit erforscht. Zur Feier des Jubiläums besuchten die Kameras des Weltraumteleskops Hubble das kultigste Bild erneut. Das Ergebnis ist diese schärfere, größere Ansicht der Region. Sie wird als Säulen der Sternbildung bezeichnet. Hubble nahm sie erstmals 1995 erstmals auf.

Tief im Inneren der aufgetürmten Strukturen entstehen Sterne. Die Säulen aus kaltem Gas und Staub sind Lichtjahre lang. Sie sind etwa 6500 Lichtjahre entfernt und befinden sich in M16, dem Adlernebel im Sternbild Schlange. Die kosmischen Säulen werden vom energiereichen ultravioletten Licht und den mächtigen Winden der jungen, massereichen Sterne in M16 geformt und erodiert. Sie sind dem Untergang geweiht.

Dieses Hubble-Bild zeigt spektakuläre Details in sichtbarem Licht. Die turbulente Umgebung der Sternbildung in M16 ähnelt wahrscheinlich jener Umgebung, in der unsere Sonne entstanden ist.

Zur Originalseite

100 Millionen Sterne in der Andromeda-Galaxie

An den Zacken links und unten im Bild kann man erahnen, aus wie vielen Bildfeldern die Nahaufnahme von Andromeda aufgenommen wurde. Links ist das Zentrum der Andromedagalaxie M31, rechts verläuft ein blauer Spiralarm.

Bildcredit: NASA, ESA, J. Dalcanton, B. F. Williams, L. C. Johnson (U. Washington), PHAT-Team, R. Gendler

Welche Sterne bilden die Andromeda-Galaxie? Um das herauszufinden, untersuchen Forschende die nahe Spirale. Sie setzten dazu das größte Bild zusammen, das je mit dem Weltraumteleskop Hubble aufgenommen wurde.

Tausende Beobachtungen und Hunderte Bildfelder führten zur „Panchromatischen Hubble-Andromeda-Schatzkammer“. Sie wird auch Panchromatic Hubble Andromeda Treasury oder kurz PHAT genannt und zeigt etwa ein Drittel der Galaxie. Mehr als 100 Millionen Sterne sind einzeln aufgelöst. Links im Kompositbild ist das Zentrum der Galaxie. Rechts verläuft ein markanter blauer Spiralarm.

Die hellsten Sterne im Bild liegen im Vordergrund in der Milchstraße. Die PHAT-Daten werden analysiert, um zu verstehen, wo und wie die Sterne in M31 entstanden sind und was den Unterschied zu unserer Galaxis ausmacht. Auch Sternhaufen und undurchsichtiger Staub in Andromeda soll erkannt und bestimmt werden.

Zur Originalseite

Fuchs, Einhorn und Weihnachtsbaum

Ein roter, strukturierter Nebel leuchtet im Hintergrund. Links ragt ein dunkler Kegel mit heller Spitze ins Bild, rechts strahlt ein sehr heller Stern. Mehrere Sterne mit blauem Hof sind im Bild verteilt. Der Nebel rechts unten erinnert an ein Fuchsfell.

Bildcredit und Bildrechte: R. Colombari und Francesco Antonucci; Daten: Subaru, ESO und F. Antonucci

Was haben diese Dinge gemeinsam: ein Kegel, ein Fuchsfell und ein Christbaum? Antwort: Alle befinden sich im Sternbild Einhorn (Monoceros). Der komplexe Wirrwarr aus kosmischem Gas und Staub ist eine Sternbildungsregion. Sie ist ungefähr 2700 Lichtjahre entfernt. Ihre Katalognummer lautet NGC 2264.

In der Region sind dunkle, interstellare Staubwolken mit rötlichen Emissionsnebeln vermischt. Letztere werden vom energiereichen Licht neuer Sterne angeregt. Wenn die undurchsichtigen Staubwolken in der Nähe von heißen jungen Sternen liegen, reflektieren sie Sternenlicht. Sie bilden dann blaue Reflexionsnebel.

Das Bild ist etwa so breit wie der Vollmond. In der der Entfernung von NGC 2264 entspricht das zirka 30 Lichtjahren. Zur Besetzung kosmischer Charaktere gehören auch der verworrene Fuchsfellnebel rechts unten, der helle veränderliche Stern S Mon über dem Fuchsfell und der Kegelnebel, der links ins Bild ragt.

Wegen der Verteilung der Sterne ist NGC 2264 auch als Christbaum-Sternhaufen bekannt. Die Spitze der dreieckigen Baumform wird von Sternen gezeichnet. Sie liegt links beim Kegelnebel. Die breitere Basis befindet sich rechts bei S Mon.

Zur Originalseite