Komet Catalina erscheint

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Fritz Helmut Hemmerich

Beschreibung: Komet Catalina ist für Nahaufnahmen bereit. Der riesige Schneeball aus dem äußeren Sonnensystem, formal bekannt als C/2013 US10 (Catalina), umrundete letzten Monat die Sonne und nähert sich nun seiner größten Annäherung an sie Erde im Januar. Da es jetzt auch keinen störenden Mondschein gibt, genießen Morgenbeobachter auf der Nordhalbkugel der Erde die beste Sicht auf den neuen Kometen. Und Komet Catalina ist keine Enttäuschung. Obwohl er nicht so hell ist, wie frühe Prognosen vermuteten, weist der Komet sowohl Staub– (links unten) als auch IonenSchweife (rechts oben) auf, womit er ein eindrucksvolles Objekt für Fernglas und Kameras mit Langzeitbelichtung ist. Dieses Bild wurde letzte Woche auf den Kanarischen Inseln vor der Nordwestküste Afrikas fotografiert. Bestimmt folgen Himmelsfreunde auf der ganzen Welt dem Kometen im Laufe der nächsten Monate, um zu sehen, wie er sich entwickelt.

Zur Originalseite

Eine Kraft aus dem leeren Raum: der Casimir-Effekt

Eine extrem glatte Kugel befindet sich auf einer welligen, löchrigen Oberfläche. Links ist eine Platte mit Fortsätzen, auf denen die Kugel liegt.

Bildcredit und Bildrechte: Umar Mohideen (U. California at Riverside)

Diese winzige Kugel liefert Hinweise, dass sich das Universum ewig ausdehnt. Sie ist etwas größer als 1/10 mm und bewegt sich auf eine glatte Platte zu. Das ist die Reaktion auf Energieschwankungen im Vakuum des leeren Raumes. Diese Anziehung wird als Casimir-Effekt bezeichnet. Er ist nach dem Entdecker benannt, der vor etwa 60 Jahren verstehen wollte, warum sich zähe Flüssigkeiten wie Mayonnaise so langsam bewegen.

Heute gibt es Hinweise, dass ein Großteil der Energiedichte im Universum eine unbekannte Form hat. Sie wird als Dunkle Energie bezeichnet. Form und Ursprung der Dunklen Energie sind gänzlich unbekannt. Sie wurde aber im Zusammenhang mit Vakuumfluktuation vorhergesagt, ähnlich wie der Casimir-Effekt. Die Dunkle Energie wird auf unbekannte Weise vom Raum selbst erzeugt.

Die gewaltige, rätselhafte Dunkle Energie stößt anscheinend jede Materie durch Gravitation ab. Das führt wahrscheinlich dazu, dass sich das Universum bis in alle Ewigkeit ausdehnt. Die Erforschung der Vakuumenergie hat höchste Priorität, nicht nur um das Universum besser zu verstehen, sondern auch um zu verhindern, dass mechanische Teilchen von Mikromaschinen aneinander kleben.

Zur Originalseite

Kepler-Planetenmaschine IV


Videocredit und -rechte: Ethan Kruse (Universität von Washington)

Beschreibung: Die Gesamtsumme der Kandidaten und bestätigten Mehrfachplanetensysteme der nach Exoplaneten suchenden Mission Kepler beläuft sich auf 1705 Welten auf Bahnen um 685 ferne Sterne. Wenn man all diese Exoplanetenbahnen im gleichen Maßstab abbildet und ihre relativen Bahnbewegungen zeigt, ergibt das die Kepler-Planetenmaschine IV. Um die Planeten sichtbar zu machen, sind ihre Größen nicht maßstabsgetreu abgebildet. Zur Veranschaulichung des Maßstabs des hypnotischen Videos wurden die Planetenbahnen des Sonnensystems (strichlierte Linien) hinterlegt. Kepler entdeckt Exoplaneten mithilfe von Planetentransiten. Dazu sucht man nach leichten Lichtabschwächungen, die entstehen, wenn der Planet vor seinem Stern vorbeizieht. Im Zeitraffervideo sind die Bahnen aller Mehrfachplanetensysteme von Kepler so ausgerichtet, dass die beobachteten Transite auf der Dreiuhrposition stattfinden. Die derwischartigen Bewegungen zeigen den starken Unterschied zwischen den meisten von Kepler entdeckten Exoplanetensystemen und unserem eigenen. Planen Sie eine interstellare Reise? Prüfen Sie zuerst die Größenordnung links oben. Der Farbcode zeigt die mittlere Oberflächentemperatur der Planeten, die anhand der Größen der Bahnen und der Heimatsterne geschätzt wurde.

Zur Originalseite

Cygnus: Blase und Sichel

Das Bild ist relativ gleichförmig mit magentafarbenen Nebeln und wenigen Sternen gefüllt. Links unten leuchtet zart ein seifenblasenförmiger Nebel, rechts oben der helle, stark strukturierte Sichelnebel.

Bildcredit und Bildrechte: Ivan Eder

Diese Wolken aus Gas und Staub treiben im hoch fliegenden Sternbild Schwan durch dichte Sternenfelder in der Ebene der Milchstraße. Das Teleskopsichtfeld zeigt links unten die Seifenblase und rechts oben den Sichelnebel. Beide entstanden am Ende der Existenz eines Sterns.

Die Sichel wird auch NGC 6888 genannt. Sie entstand, als der helle, massereiche Wolf-Rayet-Stern WR 136 in der Mitte durch seinen starken Sternwind die äußere Hülle abstieß. WR 136 verbrennt seinen Kraftstoff rasend schnell. Daher erreicht er bald das Ende seiner kurzen Existenz. Sie endet voraussichtlich als spektakuläre Supernova.

Der Seifenblasennebel wurde kürzlich entdeckt. Er ist wahrscheinlich ein planetarischer Nebel. Das ist die letzte Hülle eines langlebigen sonnenähnlichen Sterns mit geringer Masse, der zu einem weißen Zwerg wird und langsam abkühlt. Beide Nebel sind etwa 5000 Lichtjahre entfernt. Der größere Sichelnebel ist ungefähr 25 Lichtjahre groß.

Zur Originalseite

Enceladus: Wasserwelt am Ring

Über den Saturnringen schwebt die Sichel des Saturnmondes Enceladus. Am dunklen unteren Rand strömen Fontänen aus Eiskristallen aus.

Bildcredit: Cassini-Bildgebungsteam, SSI, JPL, ESA, NASA

Saturns eisiger Mond Enceladus posiert auf diesem Bild der Raumsonde Cassini über den eisigen Ringen des Gasriesen. Die dramatische Szene entstand am 29. Juli. Cassini kreuzte dabei unter die Ringebene. Die Kameras der Raumsonde waren etwa 1 Million Kilometer von der hellen Mondsichel entfernt und blickten fast zur Sonne.

Enceladus ist ein überraschend aktiver Mond. Sein Durchmesser beträgt 500 km. Die faszinierenden Geysire am Südpol unter dem dunklen Südrand lassen Dampf ab. Bei Cassinis Vorbeiflügen wurden jahrelang Daten und Bilder gesammelt. Diese zeigten unlängst, dass es unter der Eiskruste des Mondes einen globalen Ozean aus flüssigem Wasser gibt.

Eine genaue Analyse zeigt, dass Oberfläche und Kern nicht starr miteinander verbunden sind. Enceladus schaukelt auf seiner Umlaufbahn leicht vor und zurück. Das bestätigt die globale Ausdehnung der faszinierenden flüssigen Schicht.

Zur Originalseite

Sonnenuntergang und Grüner Blitz beim Goldenen Tor

Videocredit und -rechte: Alex Rivest; Musik: Eureka von Huma-Huma

Die Kulisse ist die Bucht von San Francisco. Gerade geht die Sonne hinter der Golden Gate Bridge unter. Gleich seht ihr einen doppelten Sonnenuntergang mit einem seltenen grünen Blitz am Ende. Seht genau zu! Durch den Verkehr auf der Brücke ist die Luft ungewöhnlich warm. Im Zeitrafferfilm bricht sie das Licht der Sonne zur Erde. So entsteht ein zweites Bild über der Sonne.

Das zweite Bild der Sonne verschwindet, nachdem das Hauptbild unter die Brücke taucht. Es ist der erste „Sonnenuntergang“. Die ganze Zeit ziehen vorne Schiffe vorbei. Autos fahren über die Brücke. In der Ferne ziehen Wolken über den Himmel und reflektieren das Sonnenlicht. Die Szene endet mit einem Pfad in der unruhigen Erdatmosphäre, der nur energiereiches sichtbares Sonnenlicht durchlässt. Daher ist letzte Blick auf unseren Heimatstern ein grüner Blitz.

Zur Originalseite

Nebel im Fuhrmann

Das Bild ist dicht von kleinen Sternen übersät. Hinten sind dichte, teils stark strukturierte, rot leuchtende Nebelwolken verteilt. Rechts ist der Kaulquappennebel, unten sind die Spinne und die Fliege, links oben leuchtet die Emissionsregion IC 405, der Flammensternnebel.

Bildcredit und Bildrechte: Fritz Helmut Hemmerich

Das antike Sternbild Fuhrmann (Auriga) enthält viele Sternhaufen und Nebel. Im nördlichen Winter reitet es hoch am Nachthimmel. Das detailreiche Teleskopbild entstand mit Schmal- und Breitbandfiltern. Es ist am Himmel fast 4 Grad breit. Das entspricht 8 Vollmonden nebeneinander. Es zeigt einige Schätze im Sternbild Fuhrmann.

Die Emissionsregion IC 405 links oben ist etwa 1500 Lichtjahre entfernt. Die roten, verschachtelten Wolken aus leuchtendem Wasserstoff werden auch Flammensternnebel genannt. Der heiße O-Stern AE Aurigae bringt sie zum Leuchten.

IC 410 rechts oben ist viel weiter entfernt, nämlich 12.000 Lichtjahre. Diese Sternbildungsregion ist berühmt für den eingebetteten jungen Sternhaufen NGC 1893 und kaulquappenförmige Wolken aus Staub und Gas.

Rechts unten befinden sich IC 417 und NGC 1931. Sie sind die Spinne und die Fliege. Es sind ebenfalls junge Sternhaufen, die in ihre Entstehungswolken eingebettet sind. Sie liegen weit hinter IC 405. Der Sternhaufen NGC 1907 ist unten rechts neben der Mitte platziert. Das dicht gedrängte Bildfeld in der Ebene unserer Milchstraße liegt ungefähr gegenüber vom galaktischen Zentrum.

Zur Originalseite