M15: Dichter Kugelsternhaufen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Bernhard Hubl (CEDIC)

Beschreibung: Messier 15 ist ein unermessliches Gewimmel von mehr als 100.000 Sternen. Er ist ein 13 Milliarden Jahre altes Relikt der frühen Entstehungsjahre unserer Galaxis und einer von ungefähr 170 Kugelsternhaufen, die immer noch im Halo unserer Milchstraße wandern.

M15 liegt in der Mitte in dieser scharfen Teleskopansicht, er ist ungefähr 35.000 Lichtjahre entfernt und steht im Sternbild Pegasus, weit hinter den gezackten Vordergrundsternen. Sein Durchmesser beträgt zirka 200 Lichtjahre. Doch mehr als die Hälfte seiner Sterne sind in einem Raum von 10 Lichtjahre gedrängt, somit herrscht dort eine der höchsten Sterndichten, die wir kennen. Mit Hubble durchgeführte Messungen der zunehmenden Geschwindigkeiten der Zentralsterne von M15 sind ein Hinweis, dass ein massereiches Schwarzes Loch im Zentrum des dichten Kugelsternhaufens M15 haust.

Zur Originalseite

Trapezium: Im Zentrum Orions

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Daten: Hubble Legacy Archive, Bearbeitung: Robert Gendler

Beschreibung: Nahe der Mitte dieses scharfen kosmischen Porträts, im Zentrum des Orionnebels, befinden sich vier heiße, massereiche Sterne, die als Trapez bekannt sind. Sie sind in einem Gebiet mit einem Radius von etwa 1,5 Lichtjahren versammelt und dominieren den Kern des dichten Orionnebel-Sternhaufens. Ultraviolette ionisierende Strahlung der Trapezsterne, die hauptsächlich vom hellsten Stern Theta-1 Orionis C stammt, liefert die Energie für das gesamte sichtbare Leuchten der komplexen Sternbildungsregion.

Der Orionnebelhaufen ist etwa drei Millionen Jahre alt und war in seinen jüngeren Jahren sogar noch kompakter. Eine aktuelle dynamische Analyse zeigt, dass unkontrollierte Sternkollisionen in früherer Zeit ein Schwarzes Loch mit mehr als 100 Sonnenmassen gebildet haben könnten. Die Anwesenheit eines Schwarzen Lochs im Haufen könnte die beobachteten hohen Geschwindigkeiten der Trapezsterne erklären. Da der Orionnebel etwa 1500 Lichtjahre von uns entfernt ist, wäre es vom Planeten Erde aus gesehen das nächstgelegene Schwarze Loch.

Zur Originalseite

Reise zum Zentrum der Galaxis


Videocredit: ESO/MPE/Nick Risinger (skysurvey.org)/VISTA/J. Emerson/Digitized Sky Survey 2

Beschreibung: Welche Wunder liegen im Zentrum unserer Galaxis? Im Science-Fiction-Klassiker „Reise zum Mittelpunkt der Erde“ von Jules Verne finden Professor Liedenbrock und seine Begleiter viele seltsame, aufregende Wunder.

Astronomen kennen bereits einige seltsame Objekte im Zentrum unserer Galaxis, darunter gewaltige kosmische Staubwolken, helle Sternhaufen, wirbelnde Ringe aus Gas und sogar ein extrem massereiches Schwarzes Loch. Ein Großteil des galaktischen Zentrums ist im sichtbaren Licht durch dazwischen liegenden Staub und Gas vor unserer Sicht verborgen, doch man kann in anderen Wellenlängen der elektromagnetischen Strahlung forschen.

Dieses Video ist eigentlich eine digitale Sondierung des Zentrums der Milchstraße, die mit Bildern der Digitisierten Himmelsdurchmusterung im sichtbaren Licht beginnt. Im weiteren Verlauf des Films verschiebt sich das gezeigte Licht zum Staub durchdringenden Infrarot und zeigt Gaswolken, von denen man 2013 herausfand, dass sie in das zentrale Schwarze Loch stürzen.

Im Mai 2018 zeigten Beobachtungen eines Sterns, der nahe am zentralen Schwarzen Loch in der Milchstraße vorbeizog, zum allerersten Mal eine Gravitationsrotverschiebung im Licht des Sterns – was laut Einsteins allgemeiner Relativitätstheorie zu erwarten war.

Höhepunkte: Aktuelle totale Mondfinsternis

Zur Originalseite

Neutrino trifft zeitgleich mit fernem Blazarstrahl ein

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: DESY, Labor für Wissenschaftskommunikation

Beschreibung: Mit Geräten, die unter dem Südpol der Erde tief im Eis eingefroren sind, hat die Menschheit anscheinend ein Neutrino aus dem fernen Universum entdeckt. Falls das bestätigt wird, markiert es den ersten eindeutigen Nachweis kosmologisch weit entfernter Neutrinos und den Beginn eines beobachteten Zusammenhangs zwischen energiereichen Neutrinos und kosmischer Strahlung, die durch mächtige Ströme aus aufflackernden Quasaren (Blazare) erzeugt werden.

Nachdem der antarktische IceCube-Detektor im September 2017 ein energiereiches Neutrino gemessen hatte, begannen viele der weltweit größten Observatorien mit der Suche nach seinem Gegenstück im sichtbaren Licht. Und sie fanden es. Ein solches Gegenstück wurde unter anderem vom Weltraumobservatorium Fermi der NASA ermittelt, welches herausfand, dass der Gammastrahlenblazar TXS 0506+056 in der richtigen Richtung stand und die Gammastrahlen eines Blitzes fast exakt zeitgleich mit dem Neutrino eintrafen. Obwohl diese und weitere Übereinstimmungen von Position und Zeit statistisch stark sind, warten Astronomen weitere ähnliche Zusammenhänge zwischen Neutrinos und Blazar-Licht, um ganz sicher zu gehen.

Diese künstlerische Darstellung zeigt einen Teilchenstrahl, der von einem Schwarzen Loch im Zentrum eines Blazars ausströmt.

Zur Originalseite

Centaurus A

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: CEDIC Team am Chilescope, BearbeitungBernhard Hubl

Beschreibung: Centaurus A ist nur 11 Millionen Lichtjahre entfernt und somit vom Planeten Erde aus gesehen die nächstgelegene aktive Galaxie. Diese scharfe Teleskopansicht zeigt die ungewöhnliche elliptische Galaxie, diese ist auch als NGC 5128 bekannt und umfasst mehr als 60.000 Lichtjahre.

Centaurus A ist offensichtlich das Ergebnis einer Kollision zweier normaler Galaxien, was zu einem fantastischen Durcheinander aus Sternhaufen und imposanten Staubbahnen führte. Nahe dem Galaxienzentrum werden ständig übrig gebliebene kosmische Trümmer von einem zentralen Schwarzen Loch mit Milliarden Sonnenmassen vernichtet. Wie in anderen aktiven Galaxien erzeugt dieser Prozess wahrscheinlich die Radio-, Röntgen- und Gammastrahlenenergie, die von Centaurus A abgestrahlt wird.

Zur Originalseite

Viele Singularitäten im Galaktischen Zentrum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC / Columbia Univ./ C. Hailey et al.

Beschreibung: Eine kürzlich durchgeführte informelle Studie ergab, dass Astronomen noch keinen guten Sammelbegriff für Gruppen Schwarzer Löcher haben. Doch sie brauchen einen.

Die roten Kreise auf diesem Bild des Röntgenobservatoriums Chandra kennzeichnen eine Gruppe mit einem Dutzend Schwarzer Löcher in Doppelsternsystemen. Sie besitzen etwa 5 bis 30 Sonnenmassen und schwärmen in einem Umkreis von ungefähr 3 Lichtjahre um das Zentrum unserer Galaxis mit einem sehr massereiche Schwarzen Loch, das als Sagittarius A* (Sgr A*) bezeichnet wird. Gelbe Kreise kennzeichnen Röntgenquellen, die wahrscheinlich weniger massereiche Neutronensterne oder weiße Zwergsterne in Doppelsternsystemen sind.

Einzelne Schwarze Löcher wären unsichtbar, doch in Doppelsternsystemen sammeln sie Materie von ihrem normalen Begleitstern und erzeugen Röntgenstrahlung. In der Entfernung des galaktischen Zentrums kann Chandra nur die helleren dieser Doppelsysteme mit Schwarzen Löchern als punktförmige Röntgenquellen erkennen – ein Hinweis, dass es dort Hunderte schwächerer Doppelsysteme mit Schwarzen Löchern geben müsste, die noch nicht entdeckt wurden.

Zur Originalseite

Fasern der aktiven Galaxie NGC 1275

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble Legacy Archive, ESA, NASA; Bearbeitung und Bildrechte: Domingo Pestana

Beschreibung: Was hält die Fasern an dieser Galaxie?

Die Fasern bleiben in NGC 1275 bestehen, obwohl der Tumult galaktischer Kollisionen sie zerstört haben sollten. Die aktive Galaxie NGC 1275 ist das zentrale markante Mitglied des großen, relativ nahen Perseus-Galaxienhaufens. Die aktive Galaxie sieht in sichtbaren Wellenlängen wild aus, sie ist auch eine gewaltige Quelle an Röntgen– und Radioemissionen.

NGC 1275 sammelt Materie, indem ganze Galaxien hineinfallen und letztlich ein sehr massereiches Schwarzes Loch im Kern der Galaxie füttern. Dieses Kompositbild, das aus Archivdaten des Weltraumteleskops Hubble nachgebaut wurde, betont die entstandenen galaktischen Trümmer und Fasern aus leuchtendem Gas, manche sind bis zu 20.000 Lichtjahre lang.

Beobachtungen lassen vermuten, dass die Strukturen, die durch die Aktivität des Schwarzen Lochs vom Galaxienzentrum ausgestoßen werden, durch Magnetfelder zusammengehalten werden. NGC 1275, auch bekannt als Perseus A, ist größer als 100.000 Lichtjahre und etwa 230 Millionen Lichtjahre entfernt.

Zur Originalseite

Wachsendes Schwarzes Loch mit Strahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, Swift, Aurore Simonnet (Sonoma State U.)

Beschreibung: Was passiert, wenn ein Schwarzes Loch einen Stern verschlingt?

Viele Details sind noch unbekannt, doch aktuelle Beobachtungen liefern neue Hinweise. 2014 wurde von den bodengebundenen Roboterteleskopen des Projekts der automatisierten Ganzhimmelssuche nach Supernovae (ASAS-SN) eine mächtige Explosion beobachtet und weiterverfolgt, unter anderem von den Instrumenten des NASASatelliten Swift im Erdorbit. Computermodelle dieser Emissionen passen zu einem Stern, der von einem fernen, sehr massereichen Schwarzen Loch auseinandergerissen wird. Die Ergebnisse einer solchen Kollision sind auf dieser künstlerischen Darstellung dargestellt.

Das Schwarze Loch selbst ist als winziger schwarzer Punkt in der Mitte dargestellt. Wenn Materie ins Loch fällt, kollidiert sie mit anderer Materie und erhitzt sich. Das Schwarze Loch ist von einer Akkretionsscheibe aus heißer Materie umgeben, die einst der Stern war, und aus der Rotationsachse des Schwarzen Lochs strömt ein Strahl.

Zur Originalseite

Im Zentrum der Spiralgalaxie NGC 5033

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, MASTBearbeitung: Judy Schmidt

Beschreibung: Was geschieht im Zentrum der Spirale NGC 5033? Viele Dinge – einige laufen rund, andere sind energiereich, und manche verstehen wir nicht gut. NGC 5033 ist wegen der großen Aktivität in ihrem Kern als Seyfert-Galaxie bekannt. Helle Sterne, dunkler Staub und interstellares Gas wirbeln schnell um ein galaktisches Zentrum, das durch ein sehr massereiches Schwarzes Loch leicht verschoben erscheint. Diese Verschiebung trat vermutlich ein, weil NGC 5033 irgendwann in der letzten Milliarde Jahre mit einer anderen Galaxie verschmolz.

Dieses Bild wurde 2005 mit dem Weltraumteleskop Hubble fotografiert. NGC 5033 ist etwa 100.000 Lichtjahre groß und so weit entfernt, dass wir sehen, wie sie vor ungefähr 40 Millionen Jahren aussah.

Zur Originalseite

NGC 4696: Fasern um ein Schwarzes Loch

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, A. Fabian

Beschreibung: Was geschieht im Zentrum der elliptischen Galaxie NGC 4696? Auf diesem kürzlich veröffentlichten Bild des Weltraumteleskops Hubble wurden darin lange Tentakel aus Gas und Staub sehr detailreich abgebildet. Diese Fasern verlaufen anscheinend zur Zentralregion der Galaxie, die vermutlich von einem sehr massereichen Schwarzen Loch besetzt ist. Es gibt Hinweise, dass dieses Schwarze Loch Energie abzieht, die das umgebende Gas erhitzt, kühlere Fasern aus Gas und Staub ausstößt und die Sternbildung beendet. Diese Fasern werden von Magnetfeldern in Schwebe gehalten, scheinen dann auf spiralförmigen Bahnen zum zentralen Schwarzen Loch zu laufen und schließlich dieses zu umkreisen.

NGC 4696 ist die größte Galaxie im Zentaurus-Galaxienhaufen, der etwa 150 Millionen Lichtjahre von der Erde entfernt ist. Dieses Bild zeigt eine ungefähr 45.000 Lichtjahre breite Region.

Zur Originalseite

Arp 299: Schwarze Löcher in kollidierenden Galaxien

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, GSFC, Hubble, NuSTAR

Beschreibung: Spuckt nur ein schwarzes Loch energiereiche Strahlung – oder zwei? Um das herauszufinden, richteten Astronomen das NASA-Teleskop NuSTAR im Erdorbit auf die rätselhaften kollidierenden Galaxien Arp 299, welche die Strahlung ausstoßen. Die beiden Galaxien von Arp 299 sind für Millionen Jahre in einem Gravitationskampf gefangen, während ihre zentralen Schwarzen Löcher bald selbst kämpfen werden.

Dieses hoch aufgelöste Bild in sichtbarem Licht wurde von Hubble fotografiert. Das darübergelegte diffuse Röntgenleuchten wurde von NuSTAR abgebildet und ist in Falschfarbenrot, -grün und -blau dargestellt. Die NuSTAR-Beobachtungen zeigen bei nur einem der zentralen Schwarzen Löcher, wie es sich durch eine Region aus Gas und Staub kämpft und dabei Materie absorbiert und Röntgenlicht abstrahlt. Die energiereiche Strahlung stammt nur vom rechten Galaxienzentrum und entsteht sicherlich in der Nähe – jedoch außerhalb – des Ereignishorizonts des zentralen Schwarzen Loches. In Milliarden Jahren bleibt nur eine Galaxienkomponente übrig und nur ein zentrales massereiches Schwarzes Loch. Bald danach stürzt sich jedoch eine andere Galaxie ins Getümmel.

Zur Originalseite