Weltraumteleskop Webb zeigt Jupiter

Jupiter im Infrarotlicht, aufgenommen vom Weltraumteleskop James Webb. Manche von Jupiters Wolken sind ungewöhnlich gefärbt, zum Beispiel der große Rote Fleck, ein Ring, mehrere Monde und ein helles Polarlicht.

Bildcredit: NASA, ESA, CSA, Jupiter-ERS-Team; Bearbeitung: Ricardo Hueso (UPV/EHU) und Judy Schmidt

Diese Infrarot-Ansicht von Jupiter von Webb ist erhellend. Das Weltraumteleskop James Webb machte hoch aufgelöste Infrarotbilder von Jupiter. Sie zeigen die Unterschiede zwischen hellen Wolken hoch oben – dazu gehört auch der große Rote Fleck – und dunklen, tief liegenden Wolken.

Darüber hinaus zeigt dieses Bild von Webb auch Jupiters Staubring, helle Polarlichter und die Monde Amalthea und Adrastea. Das Magnetfeld des stark vulkanischen Mondes Io lenkt elektrisch geladene Teilchen auf Jupiter. Ein Indiz dafür sieht man im südlichen Polarlicht-Oval. Einige Objekte sind so hell, dass das Licht an Webbs Optik merklich abgelenkt wird und Streifen entstehen.

Das Webb-Teleskop läuft in Erdnähe um die Sonne. Sein Spiegel hat einen Durchmesser von mehr als sechs Metern. Damit ist es das größte astronomische Teleskop, das je ins All startete. Seine Lichtsammelfläche ist sechsmal größer als die von Hubble.

Zur Originalseite

Jupiter und der grosse Rote Fleck

Jupiter füllt das ganze Bild. Rechts unten liegt der Große Rote Fleck unter den beiden markanten ockerfarbenen Gürteln. Braune Zonen wechseln sich mit hellen Bändern ab. Auch einige große weiße Ovale sind im Bild. Der größte Wirbelsturm ist immer noch der Rote Fleck, auch wenn er im Vergleich zu älteren Aufnahmen hier viel kleiner ist.

Bildcredit und Bildrechte: Christopher Go

Jupiter erreicht seine Opposition 2026 genau heute, am 10. Januar. Damit steht der schwerste Planet des Sonnensystems genau gegenüber der Sonne und er erreicht etwa seine größte Helligkeit für Beobachtende auf der Erde.

Dieser scharfe Schnappschuss wurde vor erst 3 Tagen mit einem Teleskop aufgenommen. Er zeigt viele Details des Gasriesen, z. B. die wirbelnden Oberflächen seiner Wolken. Sie bilden helle Streifen und dunkle Gürtel um den schnell rotierenden äußeren Planeten.

Jupiter ist für seinen lange bestehenden Antizyklon berühmt. Man nennt ihn den Großen Roten Fleck. Er befindet sich rechts unten südlich des Äquators. Auch zwei weitere kleinere rote Flecken sind sichtbar: Einer ist oben bei der nördlichen Zone und einer nah an Jupiters Südpol.

Jupiters Großer Roter Fleck wird bekanntlich allmählich kleiner. Trotzdem ist er immer noch ungefähr so groß wie die ganze Erde.

Zur Originalseite

Juno zeigt Jupiters Wolken in hoher Auflösung

Am südlichen Ende von Jupiter zerfallen die typischen Gürtel, die um den ganzen Planeten reichen, zu einem Gewirr komplexer Wirbel. Dazwischen sind auch weiße Ovale verteilt.

Bildcredit: NASA/JPL-Caltech/SwRI/MSSS; Bearbeitung und Lizenz: Thomas Thomopoulos

Wie komplex ist Jupiter? Die Jupiter-Mission Juno der NASA zeigt nach und nach, dass der jovianische Gigant komplexer ist als erwartet. Sie fand heraus, dass Jupiters Magnetfeld ganz anders ist als das einfache Dipolfeld der Erde. Es hat mehrere Pole, die zu einem komplexen Netzwerk verknotet sind. Es ist im Norden viel stärker verworren als im Süden. Außerdem zeigen Junos Radio-Messungen, dass Jupiters Atmosphäre Struktur besitzt, die weit unter die obere Wolkendecke reicht – Hunderte Kilometer in die Tiefe.

Jupiters neu entdeckte Komplexität ist auch in den südlichen Wolken augenfällig. Das zeigt dieses Bild vom letzten Monat. Die Textur und Farben wurden verstärkt. Hier zerfallen Zonen und Gürtel, die um den ganzen Planeten reichen und am Äquator sehr markant sind, zu einem komplexen Gewirr aus stürmischen Wirbeln. Diese sind so groß wie Kontinente.

Juno zieht weiterhin ihre schleifenförmigen elliptischen Bahnen. Sie saust jeden Monat nahe am riesigen Planeten vorbei. Bei jedem Umlauf erforscht sie einen leicht verschobenen Sektor.

Zur Originalseite

Jupiter und die Meteore im Sternbild Zwillinge

Über einer nächtlichen Landschaft in Portugal blitzen Meteore über den Himmel. Scheinbar strömen sie alle von einem Punkt in den Zwillingen aus, der nahe beim hellen Stern Kastor liegt. Bei Kastor und Pollux strahlt ein helles Licht, es ist der Planet Jupiter. Am Himmel sieht man außerdem die Milchstraße, rötliche Nebelwolken und ein Nachthimmellicht.

Bildcredit und Bildrechte: David Cruz

Jupiter ist der größte Gasriese in unserem Sonnensystem. Er steht hier als heller Mittelpunkt am Himmel. Das Bild entstand aus 40 Einzelaufnahmen, die aus mehr als 500 Bildern ausgewählt wurden. Auf jeder dieser Aufnahmen wurde nämlich ein Meteor festgehalten! Die Bilder entstanden in Alentejo in Portugal, und zwar in der Nacht vom 13. auf den 14. Dezember, dem Höhepunkt des Meteorstroms der Geminiden. Jedes der ausgewählten Bilder wirkt, als würden die Sternschnuppen von Jupiter ausstrahlen.

Der Punkt, aus dem scheinbar die Meteore strömen, wird als Radiant bezeichnet. Er liegt eigentlich näher beim hellen Stern Kastor im Sternbild Zwillinge. Deshalb trägt dieser Sternschnuppenstrom den Namen Geminiden. Jedenfalls ist der Ursprungskörper dieses Stroms nicht der Gasriese Jupiter, sondern ein steiniges Objekt: der erdnahe Asteroid 3200 Phaethon. Doch seine Umlaufbahn wird vom massereichen Jupiter und den Planeten im inneren Sonnensystem beeinflusst.

Zur Originalseite

Geminiden über schneebedeckten Bergen

Über einer Landschaft mit schneebedeckten Bergen und einem Haus, das hinter einigen Nadelbäumen steht, zischen Meteore über den sternklaren Himmel. Die Bilder, die den Himmel zeigen, wurden lang belichtet. Daher sieht man auch rötliche Nebel, zum Beispiel die Barnardschleife im Sternbild Orion.

Bildcredit und Bildrechte: Tomáš Slovinský

Woher kommen all diese Meteore? Was die Richtung am Himmel betrifft, lautet die pointierte Antwort: aus dem Sternbild Zwillinge (Gemini). Daher kennt man den größten Meteorschauer im Dezember als die Geminiden, denn alle Meteore des Schauers strömen scheinbar von einem Punkt in den Zwillingen aus.

Dreidimensional gesehen stößt der ungewöhnliche Asteroid 3200 Phaethon die Teilchen aus. Sie sind etwa so groß sind wie Sandkörner und folgen einer klar definierten Bahn um unsere Sonne. Der Teil der Bahn, dem die Erde am nächsten kommt, liegt vor dem Sternbild Zwillinge. Wenn also die Erde diese Bahn kreuzt, liegt der Radiant der fallenden Teilchen in diesem Sternbild.

Dieses Bild zeigt ein Komposit aus vielen Fotos. Sie wurden in den letzten Tagen am dunklen Himmel in der Slowakei aufgenommen. Hinten stehen die schneebedeckten Gipfel der Belianske Tatry. Über den Himmel ziehen zahllose helle Meteorspuren der Geminiden. Orion geht über dem Horizont auf. Der helle Stern nahe beim Radianten ist Kastor.

APOD-Rückblick: RJNs Vortrag bei Night Sky Network

Zur Originalseite

Juno fliegt an Ganymed und Jupiter vorbei

Videocredit: Bilder: NASA, JPL-Caltech, SWRI, MSSS; Animation: Koji Kuramura, Gerald Eichstädt, Mike Stetson; Musik: Vangelis

Wie wäre es wohl, am größten Mond im Sonnensystem vorbeizufliegen? Die robotische Raumsonde Juno flog 2021 an Jupiters großem Mond Ganymed vorüber. Dabei nahm sie Bilder auf, die dann digital zu einem detaillierten Film zusammengesetzt wurden.

Das Video beginnt mit dem Überflug über eine zweifarbige Oberfläche des Mondes, der 2000 km groß ist. Es zeigt eine fremdartige eisige Landschaft, die von Tälern und Kratern übersät ist. Die Rillen werden wahrscheinlich durch Platten verursacht, die sich bewegen. Die Krater entstehen durch harte Einschläge.

Juno zog auf ihrer Bahn weiter und kam zum 34. Mal ganz nah an Jupiters Wolken vorbei. Das digitale Video zeigt zahlreiche Wolkenwirbel im Norden. Farbige Zonen und Bänder umspannen in der Mitte den ganzen Planeten. Viele ovale weiße Wolken sind wie Perlschnüre aufgereiht. Zum Schluss gibt es dann wieder Wolkenwirbel, aber diesmal im Süden.

Zur Originalseite

Hubble zeigt Jupiter in Ultraviolett

Jupiter, der fast das Bild füllt, wirkt hier seltsam. Er wurde hier in UV-Licht abgebildet, die Aufnahme wurde mit Falschfarben gefärbt. Daher ist der Rote Fleck dunkelblau. Links oben ist Jupiters großer Mond Ganymed.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Jupiter sieht im ultravioletten Licht etwas anders aus. Um die Bewegung der Wolken auf Jupiter besser zu verstehen, setzte man das Weltraumteleskop Hubble ein. Es macht regelmäßig Bilder vom ganzen Planeten. So kann auch die NASA-Sonde Juno ihre kleinen Beobachtungsfelder besser einordnen.

Die Farben, die an Jupiter beobachtet werden, gehen über das sichtbare Licht hinaus. Man nützt auch Ultraviolett– und Infrarotlicht (hier nicht dargestellt).

Dieses Bild entstand im Jahr 2017. Im nahen UV-Licht sieht Jupiter anders aus, weil das reflektierte Sonnenlicht variiert. Dadurch erscheinen die Höhen und Breiten der Wolken unterschiedlich hell. Die Pole wirken im nahen UV-Licht dunkel, ebenso der große Rote Fleck und das kleine weiße Oval rechts daneben. Die Stürme weiter rechts erinnern an Perlenketten. Sie leuchten im nahen UV besonders hell und wurden in rosa Falschfarben dargestellt. Links oben steht Jupiters größter Mond Ganymed.

Juno fliegt weiterhin um Jupiter. Ein Umlauf dauert 33 Tage. Das Hubble-Teleskop kreist immer noch um die Erde. Inzwischen funktioniert nur noch ein einziges Gyroskop, das die Lage stabilisiert.

Zur Originalseite

Planeten im Sonnensystem: Neigung und Drehung

Video Credit: NASA, Animation: James O’Donoghue (U. Reading)

Wie dreht sich euer Lieblingsplanet? Dreht er sich schnell um eine fast senkrechte Achse, waagrecht oder rückwärts? Dieses Video animiert NASA-Bilder von allen acht Planeten im Sonnensystem. Man sieht, wie sie sich nebeneinander drehen. Das macht einen einfachen Vergleich möglich.

Im Zeitraffer-Video dauert ein Tag auf der Erde – das ist eine Erdumdrehung – nur wenige Sekunden. Jupiter dreht sich am schnellsten, während sich die Venus nicht nur am langsamsten dreht (sie dreht sich wirklich, genau hinschauen!), sondern auch rückwärts. Die inneren Gesteinsplaneten oben erlebten in den Anfängen des Sonnensystems dramatische Kollisionen, die ihre Drehung und Neigung veränderten.

Warum sich Planeten so drehen und neigen, wie sie es tun, wird nach wie vor erforscht. Moderne Computermodelle und die jüngste Entdeckung und Analyse von Hunderten von Exoplaneten – das sind Planeten, die andere Sterne umkreisen – lieferten viele neue Erkenntnisse.

Zur Originalseite