Monde in der Nähe von Jupiter

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Betul Turksoy

Beschreibung: Am 20. Mai teilten sich der fast volle Mond und Jupiter dieses Tele-Sichtfeld. Die Einzelaufnahme wurde fotografiert, als eine vorbeiziehende Wolkenbank das Mondlicht trübte. Das Bild zeigt die vertraute Vorderseite des großen natürlichen Begleiters unseres hübschen Planeten zusammen mit dem hellen Jupiter (rechts unten) und einigen seiner galileischen Monde. Die winzigen Lichtpünktchen in der Nähe von Jupiter, die in einer Linie stehen, sind – von links nach rechts – Ganymed, Europa, [Jupiter] und Kallisto. (Sie sind nicht bloß Staub auf Ihrem Bildschirm …)

Unser natürlicher Satellit ist näher und heller und erscheint riesig. Doch Ganymed und Kallisto sind physikalisch gesehen größer als der Erdmond, die Wasserwelt Europa ist etwas kleiner. Von den sechs größten Planetenbegleitern des Sonnensystems fehlt in dieser Szenerie nur der Saturnmond Titan. Io, der vierte galileische Mond, ist hinter dem großen Gasriesen versteckt.

Zur Originalseite

Urzeitliche Kontakt-Zweiheit 2014 MU69

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, Johns Hopkins University APL, Southwest Research Institute, Roman Tkachenko

Beschreibung: Die urzeitliche Kontakt-Zweiheit 2014 MU69, auch bekannt als Ultima Thule, ist wirklich sehr rot. Sie ist sogar das röteste Objekt im äußeren Sonnensystem, das je von einer Raumsonde von der Erde besucht wurde. Sein rötlicher Farbton stammt vermutlich von organischem Material auf seiner Oberfläche.

Die rötliche Farbe und die reizvollen Oberflächendetails, die man auf diesem Kompositbild sieht, basieren auf Daten der Raumsonde New Horizons, die bei ihrem Vorbeiflug am 1. Januar an der fernsten je erforschten Welt aufgenommen wurden. Die 8 Kilometer große Struktur im kleineren Lappen Thule (oben) wird Maryland-Krater genannt und ist die größte Vertiefung auf der Oberfläche, die wir kennen.

Die Übertragung der Daten, die beim Vorbeiflug gesammelt wurden, geht weiter und dauert bis zum Spätsommer 2020, während New Horizons tiefer in den dunklen, fernen Kupplergürtel rast.

Zur Originalseite

Detailaufnahme: Nebel des Schützen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Emilio Rivero Padilla

Beschreibung: Diese drei hellen Nebel zeigt man gerne bei Teleskopreisen im Sternbild Schütze und den dicht gedrängten Sternfeldern der zentralen Milchstraße. Charles Messier, der kosmische Tourist aus dem 18. Jahrhundert, katalogisierte zwei davon: M8, der große Nebel links neben der Mitte, und der farbenprächtige M20 links oben. Die dritte Emissionsregion ist NGC 6559, sie liegt rechts neben M8. Alle drei sind Sternkrippen und ungefähr 5000 Lichtjahre entfernt.

Der ausgedehnte M8 ist auch als Lagunennebel bekannt und größer als hundert Lichtjahre. Der gebräuchliche Name für M20 lautet Trifid. Die markante rote Farbe der Emissionsnebel stammt von leuchtendem Wasserstoff. Der starke Kontrast der blauen Farbtöne im Trifid stammt von Staub, der Sternenlicht reflektiert. In der Nähe sind kürzlich entstandene helle blaue Sterne zu sehen. Die farbenprächtige Komposit-Himmelslandschaft wurde 2018 im Teide-Nationalpark auf den Kanarischen Inseln (Spanien) fotografiert.

Zur Originalseite

Planeten des Sonnensystems: Neigen und Drehen


Videocredit: NASA; Animation: James O’Donoghue (JAXA)

Beschreibung: Wie rotiert Ihr Lieblingsplanet? Dreht er sich schnell um eine fast vertikale Achse, oder waagrecht, oder rückwärts? Dieses Video animiert NASA-Bilder aller acht Planeten im Sonnensystem, sodass sie zum einfachen Vergleich Seite an Seite rotieren.

Im Zeitraffer-Video dauert ein Tag auf der Erde – eine Erdrotation – nur ein paar Sekunden. Jupiter dreht sich am schnellsten, während die Venus nicht nur am langsamsten (man sieht es?), sondern auch noch rückwärts rotiert. Die inneren Gesteinsplaneten (oben) erlebten in den frühen Tagen des Sonnensystems vermutlich dramatische Kollisionen, welche die Rotation änderten.

Die Gründe, warum sich Planeten so drehen und neigen, wie sie es tun, bleiben Gegenstand der Forschung, viele Erkenntnisse stammen von modernen Computersimulationen sowie jüngsten Entdeckungen und Analysen Hunderter Exoplaneten: Planeten, die um andere Sterne kreisen.

Zur Originalseite

Ein Zirkumhorizontalbogen über Ohio

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Todd Sladoje

Beschreibung: Warum haben Wolken verschiedene Farben? Hier ist der Grund, dass sich Eiskristalle in fernen Zirruswolken wie kleine, schwebende Prismen verhalten. Ein Zirkumhorizontalbogen wird wegen seiner flammenartigen Erscheinung manchmal als Feuerregenbogen bezeichnet. Er verläuft parallel zum Horizont.

Damit ein Zirkumhorizontalbogen zu sehen ist, muss die Sonne mindestens 58 Grad hoch am Himmel stehen, wenn Zirruswolken vorhanden sind. Außerdem müssen die vielen flachen, sechseckigen Eiskristalle, aus denen die Federwolke besteht, waagrecht ausgerichtet sein, um das Sonnenlicht in kollektiv ähnlicher Weise richtig zu brechen. Daher sind Zirkumhorizontalbögen relativ selten zu sehen.

Diese Zirkumhorizontalbogenschau wurde 2009 mit einem polarisierten Objektiv über Dublin in Ohio fotografiert.

Zur Originalseite

Atlas, Daphnis und Pan

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Cassini Imaging Team, SSI, JPL, ESA, NASA

Beschreibung: Atlas, Daphnis und Pan sind kleine innere Ringmonde von Saturn. Auf dieser Montage aus Bildern der Raumsonde Cassini sind alle drei im gleichen Maßstab abgebildet. Die Sonde vollendete im September 2017 ihre grandiose letzte Umrundung des Ringplaneten.

Daphnis entdeckte man auf Cassinibildern aus dem Jahr 2005. Atlas und Pan wurden erstmals auf Bildern der Raumsonden Voyager 1 und 2 gesichtet. Atlas hat die Form einer fliegenden Untertasse und kreist nahe dem äußeren Rand von Saturns hellem A-Ring, während Daphnis in der engen Keeler-Teilung des A-Rings kreist und Pan in der größeren Encke-Teilung des A-Rings. Der seltsame Äquatorwall der kleinen Ringmonde könnte im Lauf der Zeit durch die Ansammlung von Ringmaterial aufgebaut worden sein. Sogar der winzige Daphnis schlägt Wellen im Ringmaterial, während er den Rand der Keeler-Teilung entlanggleitet.

Zur Originalseite

RS Puppis

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Bilddaten: NASA, ESA, Hubble Legacy Archive; Bearbeitung und Bildrechte: Rogelio Bernal Andreo (DeepSkyColors.com)

Beschreibung: Der pulsierende RS Puppis (der hellste Stern in der Bildmitte) ist zigfach massereicher als unsere Sonne und durchschnittlich 15.000 Mal leuchtstärker. RS Pup ist ein Cepheid – ein veränderlicher Stern einer Sternklasse, deren Helligkeit hilft, die Entfernung zu nahen Galaxien abzuschätzen. Das ist einer der ersten Schritte bei der Etablierung einer kosmischen Entfernungsskala.

RS Pup pulsiert mit einer Periode von etwa 40 Tagen, seine regelmäßigen Helligkeitsänderungen sind zeitverzögert im umgebenden Nebel zu erkennen, quasi als Lichteecho. Die Vermessung der Zeitverzögerung und der Winkelgröße des Nebels erlaubt Astronominnen, anhand der bekannten Lichtgeschwindigkeit die Entfernung zu RS Pup geometrisch zu ermitteln – sie beträgt 6500 Lichtjahre, mit einer bemerkenswert geringen Toleranz von plus oder minus 90 Lichtjahren.

Die per Echo vermessene Entfernung ist eine eindrucksvolle Leistung der Stellarastronomie, sie ermöglicht auch eine genauere Feststellung der tatsächlichen Helligkeit von RS Pup, und durch Übertragung auf weitere Cepheiden außerdem eine verbesserte Entfernungsschätzung zu Galaxien jenseits der Milchstraße.

Zur Originalseite

Dunkler Himmel: Die Nacht aufdrehen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Jeff Dai (TWAN)

Beschreibung: Haben Sie je einen wirklich dunklen Nachthimmel gesehen? Ein alltägliches und doch überraschendes Detail ist das leuchtende Band unserer Milchstraße, die von einem Horizont bis zum anderen reicht. Wenn Sie aber in einer großen Stadt oder in einer städtischen Umgebung leben, kennen Sie sie die Milchstraße vielleicht nicht, weil Sie wegen der Straßen­beleuchtung, die von der Erdatmosphäre reflektiert werden, nur den Mond und einige wenige Sterne sehen können.

Am heutigen Internationalen Tag des Lichtes der UNESCO bittet die Internationale Astronomische Union, die Nacht aufzudrehen, um Lichtverschmutzung besser zu verstehen und künftig zu verringern. Sie können das selbst probieren, sogar jetzt, indem Sie auf der APOD-Website der NASA Ihren Mauspfeil über das Vorher-Bild schieben.

Das Nachher-Bild, das dann erscheint, ist ein Panorama aus vier Aufnahmen, die mit derselben Kamera und am gleichen Standort aufgenommen wurden. Es zeigt, was kürzlich in China passierte, als die Bewohner von Kaihua viele Lichter ausschalteten. Auf dem Vorher-Bild sieht man die Sterne Sirius (links neben der Mitte) und Beteigeuze. Auf dem Nachher-Bild erkennen Sie Tausende Sterne und das gewölbte Band unserer Milchstraße.

Die Menschheit lebte Jahrtausende unter einem dunklen Nachthimmel. Es ist wichtig, sich mit ihm zu verbinden, sowohl für die Natur als auch das kulturelle Erbe.

Zur Originalseite

Die blutarme Spirale NGC 4921 von Hubble

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Bildrechte: Kem Cook (LLNL) & Leo Shatz

Beschreibung: Wie weit ist die Spiralgalaxie NGC 4921 entfernt? Das zu wissen ist überraschend wichtig. Ihre Entfernung wird derzeit auf etwa 300 Millionen Lichtjahre geschätzt. Doch eine präzisere Entfernungsbestimmung, gepaart mit ihrer bekannten Fluchtgeschwindigkeit, könnte der Menschheit helfen, die Expansionsgeschwindigkeit des gesamten sichtbaren Universums besser zu kalibrieren.

Um dieses Ziel zu erreichen, fotografierte das Weltraumteleskop Hubble mehrere Bilder, um stellare Schlüssel-Entfernungsmarker zu finden, die als CepheidenVeränderliche bekannt sind. Da NGC 4921 zum Coma-Galaxienhaufen gehört, ermöglicht eine präzisere Bestimmung seiner Entfernung auch eine bessere Entfernungsangabe zu einem der größten nahen Haufen im lokalen Universum.

Die prächtige Spirale NGC 4921 wird – wegen ihrer niedrigen Rate an Sternbildung und ihrer geringen Oberflächenhelligkeit – informell als anämisch bezeichnet. Auf diesem Bild sieht man – von der Mitte aus – einen hellen Kern, einen hellen Zentralbalken, einen markanten Ring aus dunklem Staub, blaue Haufen aus kürzlich entstandenen Sternen, mehrere kleinere Begleitgalaxien sowie dahinter liegende Galaxien im fernen Universum und Sterne, die in unserer Galaxis liegen und in keinem Zusammenhang mit der Galaxie stehen.

APOD in anderen Sprachen: arabisch, chinesisch (Peking), chinesisch (Taiwan), deutsch, französisch, französisch, hebräisch, indonesisch, japanisch, katalanisch, koreanischkroatisch, montenegrinisch, niederländisch, polnisch, russisch, serbisch, slowenisch, spanisch, tschechisch und ukrainisch

Zur Originalseite

Der junge Sternhaufen Trumpler 14 von Hubble

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA und J. Maíz Apellániz (IoAoA Spain); Danksagung: N. Smith (U. Arizona)

Beschreibung: Warum hat der Sternhaufen Trumpler 14 so viele helle Sterne? Weil er so jung ist. Viele Sterne im Haufen entstanden erst in den letzten 5 Millionen Jahren und sind so heiß, dass sie nachweisbares Röntgenlicht abstrahlen. In älteren Sternhaufen sind die meisten so jungen Sterne bereits gestorben – üblicherweise sind sie als Supernovae explodiert. Zurück blieben Sterne, die blasser und röter sind. Trumpler 14 ist etwa 40 Lichtjahre groß und liegt ungefähr 9000 Lichtjahre entfernt am Rand des berühmten Carinanebels.

Ein scharfes Auge erkennt auf diesem detailreichen Bild des Weltraumteleskops Hubble von Trumpler 14 aus dem Jahr 2006 zwei ungewöhnliche Objekte. Das erste ist eine dunkle Wolke links neben der Mitte. Sie könnte ein Planetensystem sein, das zu entstehen versucht, bevor es von den energiereichen Winden der massereichen Sterne in Trumpler 14 zerstört wird. Das zweite ist der Bogen links unten. Laut einer Hypothese könnte er die Überschall-Stoßwelle eines schnellen Sterns sein, der vor 100.000 Jahren aus einem völlig anderen Sternhaufen ausgestoßen wurde.

Zur Originalseite

Panorama um Rho Ophiuchi

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Mario Cogo (Galax Lux)

Beschreibung: Die farbenprächtigen Wolken, die das Sternsystem Rho Ophiuchi umgeben, sind eine der nächstliegenden Sternbildungsregionen. Rho Ophiuchi im blauen Reflexionsnebel links neben der Bildmitte ein Doppelsternsystem. Das Sternsystem ist nur 400 Lichtjahre entfernt und zeichnet sich durch seine vielfarbige Umgebung aus, zu der ein roter Emissionsnebel und zahlreiche hell- und dunkelbraune Staubbahnen gehören.

Links unter dem Rho-Ophiuchi-Molekülwolkensystem leuchten der gelbe Stern Antares und M4, ein ferner, aber zufällig überlagerter Kugelsternhaufen, er steht rechts neben Antares. Nahe dem oberen Bildrand befindet sich IC 4592, der blaue Pferdekopfnebel. Der blaue Schimmer um das Auge des blauen Pferdekopfes – und andere Sterne im Bild – ist ein Reflexionsnebel, der aus feinem Staub besteht. Rechts im Bild liegt ein geometrisch abgewinkelter Reflexionsnebel, der als Sharpless 1 katalogisiert ist. Der helle Stern in der Nähe des Staubwirbels liefert das Licht für den umgebenden Reflexionsnebel.

Die meisten dieser Elemente sind mit einem kleinen Teleskop zu sehen, das auf die Sternbilder Schlangenträger, Skorpion und Schütze gerichtet ist, doch die einzige Möglichkeit, um die komplexen Details der Staubwirbel so zu sehen, wie sie oben abgebildet sind, ist eine Langzeitbelichtung mit Kamera.

Zur Originalseite