Cygnus Hülle Supernovaüberrest W63

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: J-P Metsavainio (Astro Anarchy)

Beschreibung: Der Geist eines längst toten Sterns, der Supernovaüberrest W63, leuchtet wie ein blasser kosmischer Rauchring in der Ebene der Milchstraße im nördlichen Sternbild Schwan (Cygnus). Seine gespenstische Erscheinung ist vor dem reichen Komplex aus interstellaren Wolken und Staub in der Region von einem schaurigen blauen Leuchten umrissen.

Das schöne Bild umfasst am Himmel mehr als vier Vollmonde, es ist ein Teleskopmosaik aus zwölf Bildfeldern, die 100 Stunden Belichtungszeit mit Schmalbandfiltern kombinieren. Es zeigt das charakteristische Licht ionisierter Schwefel-, Wassrstoff- und Sauerstoffatome in roten, grünen und blauen Farbtönen. Der sichtbare Teil der immer noch expandierenden Hülle der Supernova ist mehr als 5000 Lichtjahre entfernt und um die 150 Lichtjahre groß. Bisher wurde keine Quelle mit den Überbleibseln des Originalsterns von W63 in Verbindung gebracht. Das Licht der Supernovaexplosion des Sterns hat die Erde vermutlich vor mehr als 15.000 Jahren erreicht.

Zur Originalseite

Der einsame Neutronenstern im Supernovaüberrest E0102-72.3

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: (NASA/CXC/ESO/F. Vogt et al.); Optisch: (ESO/VLT/MUSE und NASA/STScI)

Beschreibung: Warum sitzt dieser Neutronenstern nicht in der Mitte? Vor einiger Zeit wurde ein einsamer Neutronenstern in den Trümmern einer alten Supernovaexplosion entdeckt. Der „einsame Neutronenstern“, um den es geht, ist der blaue Punkt in der Mitte des roten Nebels links unten in E0102-72.3.

Auf diesem Bildkomposit ist Röntgenlicht, das vom Chandra-Observatorium der NASA fotografiert wurde, blau abgebildet, während optisches Licht, das mit dem Very Large Telescope der ESO in Chile und dem Weltraumteleskop Hubble der NASA im Orbit fotografiert wurde, rot und grün dargestellt wird.

Die versetzte Position dieses Neutronensterns ist unerwartet, da der dichte Stern vermutlich der Kern jenes Sterns ist, der als Supernova explodierte und den äußeren Nebel bildete. Es wäre möglich, dass der Neutronenstern in E0102 durch die Supernova selbst aus der Mitte des Nebels gestoßen wurde, doch dann wäre es seltsam, dass der kleinere rote Ring auf den Neutronenstern zentriert bleibt. Alternativ könnte der äußere Nebel durch ein anderes Szenario entstanden sein – vielleicht sogar unter Einfluss eins anderen Sterns. Künftige Beobachtungen der Nebel und des Neutronensterns werden das Rätsel wahrscheinlich lösen.

Zur Originalseite

M1: Der Krebsnebel von Hubble

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, J. Hester, A. Loll (ASU)

Beschreibung: Dieses Chaos bleibt zurück, wenn ein Stern explodiert. Der Krebsnebel ist das Ergebnis einer Supernova, die 1054 n. Chr. zu sehen war, er ist voller rätselhafter Fasern. Die Fasern sind nicht nur ungeheuer komplex, sie scheinen auch weniger Masse zu besitzen, als bei der ursprünglichen Supernova ausgestoßen wurde, und eine höhere Geschwindigkeit, als man bei einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen und ist in drei Farben dargestellt, die nach wissenschaftlichen Kriterien gewählt wurden. Der Krebsnebel ist etwa 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar: ein Neutronenstern mit der Masse der Sonne, aber der Größe einer Kleinstadt. Der Krebspulsar rotiert etwa 30 Mal pro Sekunde.

Zur Originalseite

Am westlichen Schleier entlang

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte:  Daten – Steve Milne und Barry Wilson, BearbeitungSteve Milne

Beschreibung: Diese filigran wirkenden Fasern aus erschüttertem leuchtendem Gas sind am irdischen Himmel im Sternbild Schwan drapiert. Sie bilden den westlichen Teil des Schleiernebels. Der Schleiernebel ist ein großer Supernovaüberrest – eine sich ausdehnende Wolke, die bei der Todesexplosion eines massereichen Sterns entstand. Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde wahrscheinlich vor mehr als 5000 Jahren.

Die interstellare Stoßwelle, die bei dem vernichtenden Ereignis hinaussprengte, pflügt durch den Weltraum, dabei fegt sie interstellare Materie auf und regt diese an. Die leuchtenden Fasern gleichen eher langen Wellen in einem Laken, das fast von der Seite sichtbar ist, das Material ist außergewöhnlich gut aufgeteilt in atomaren Wasserstoff (rot) und Sauerstoff (blaugrün).

Der Schleiernebel ist auch als Cygnusbogen bekannt und umfasst inzwischen fast drei Grad oder sechs Vollmonddurchmesser. Das sind in der geschätzten Entfernung von 1500 Lichtjahren mehr als 70 Lichtjahre. Dieses Teleskop-Mosaikbild aus zwei Bildern zeigt den westlichen Teil und umfasst etwa die Hälfte dieser Distanz. Hellere Teile des westlichen Schleiers werden als eigene Nebel wahrgenommen, darunter der Hexenbesennebel (NGC 6960), der sich auf dieser Ansicht oben befindet, sowie Pickerings Dreieck (NGC 6979) links unten.

Zur Originalseite

Der Bleistiftnebel in Rot und Blau

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: José Joaquín Perez

Beschreibung: Diese Stoßwelle pflügt mit mehr als 500.000 Kilometern pro Stunde durch den interstellaren Raum. Die dünnen, aufwärts gerichteten geflochtenen Fasern auf diesem scharfen, detailreichen Farbkomposit sind eigentlich lange Wellen in einer kosmischen Schicht aus leuchtendem Gas, die fast genau von der Seite sichtbar ist. Sie ist als NGC 2736 katalogisiert. Ihre längliche Erscheinung suggeriert die gängige Bezeichnung Bleistiftnebel.

Der Bleistiftnebel ist ungefähr 5 Lichtjahre lang und 800 Lichtjahre entfernt, ist aber nur ein kleiner Teil des Vela-Supernovaüberrestes. Der Vela-Überrest ist die ungefähr 100 Lichtjahre große expandierende Trümmerwolke eines Sterns, der vor etwa 11.000 Jahren explodierte. Ursprünglich bewegte sich die Stoßwelle mit Millionen Kilometern pro Stunde, wurde aber stark abgebremst und fegte das umgebende interstellare Material zusammen. Auf diesem Schmalband-Weitwinkelbild zeigen rote und blaue Farben das charakteristische Leuchten ionisierter Wasserstoff– und Sauerstoffatome.

Aktuelle Galerien: Start der Parker Solar Probe und Perseïden-Meteorstrom 2018

Zur Originalseite

NGC 6960 – der Hexenbesennebel

Ein bläulicher Nebel mit roten wolkigen Strukturen verläuft wie ein Wasserfall diagonal durchs Bild. Im Hintergrund sind zarte Sterne dicht verteilt.

Bildcredit und Bildrechte: Martin Pugh (Heaven’s Mirror Observatory)

Beschreibung: Vor zehntausend Jahren, lange vor Beginn der Geschichtsaufzeichnung, müsste plötzlich ein neues Licht am Nachthimmel erschienen sein, das wenige Wochen später wieder verblasste. Heute wissen wir, dass dieses Licht von einer Supernova stammte – einem explodierenden Stern -, und bezeichnen die expandierende Trümmerwolke – den Supernovaüberrest – als Schleiernebel.

Diese scharfe Teleskopansicht ist auf einen westlichen Ausschnitt des Schleiernebels zentriert, der als NGC 6960 katalogisiert ist, weniger formell ist er als Hexenbesennebel bekannt. Die die interstellare Stoßwelle, die bei der verheerenden Explosion entstand, pflügt durch den Raum, fegt interstellare Materie auf und regt sie an. Die leuchtenden Fasern wurden mit Schmalbandfiltern abgebildet, sie sind wie lange Wellen in einem Tuch, das fast genau von der Seite sichtbar ist, und auffallend gut in atomaren Wasserstoff (rot) und Sauerstoff (blau-grün) aufgeteilt.

Der ganze Supernovaüberrest ist etwa 1400 Lichtjahre entfernt und liegt im Sternbild Schwan. Dieser Hexenbesen ist ungefähr 35 Lichtjahre groß. Der helle Stern im Bild ist 52 Cygni, er ist an einem dunklen Ort mit bloßem Auge sichtbar, steht jedoch in keinem Zusammenhang mit dem urzeitlichen Supernovaüberrest.

Zur Originalseite

Sharpless 249 und der Quallennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Albert Barr

Beschreibung: Dieses hübsche Teleskopbild zeigt den Quallennebel, der normalerweise blass und schwer fassbar ist. Die zentrierte Szene ist rechts und links an den beiden hellen Sternen Mu und Eta Geminorum am Fuß der himmlischen Zwillinge verankert.

Der Quallennebel ist der hellere gewölbte Emissionsbogen mit baumelnden Tentakeln. Die kosmische Qualle ist Teil des blasenförmigen Supernovaüberrestes IC 443 – der expandierenden Trümmerwolke eines explodierten massereichen Sterns. Das Licht der Explosion erreichte erstmals vor mehr als 30.000 Jahren den Planeten Erde. Wie sein Cousin in astrophysikalischen Gewässern, der Krebsnebel-Supernovaüberrest, enthält der Quallennebel einen Neutronenstern – den Rest eines kollabierten Sternkerns. Ein Emissionsnebel, der als Sharpless 249 katalogisiert ist, füllt links oben das Feld. Der Quallennebel ist ungefähr 5000 Lichtjahre entfernt. In dieser Entfernung wäre das Bild etwa 300 Lichtjahre groß.

Zur Originalseite

RCW 114: Drachenherz im Altar

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Andrew Campbell

Beschreibung: Diese große, dramatisch geformte kosmische Wolke umfasst am Himmel des Planeten Erde im südlichen Sternbild Altar mehr als sieben Grad oder 14 Vollmonde. Die fasrige Erscheinung ist als RCW 114 katalogisiert. Sie ist schwierig abzubilden, auf diesem Teleskopmosaik wurde sie von den verräterischen rötlichen Emissionen ionisierter Wasserstoffatome aufgezeichnet.

RCW 114 wurde als Supernovaüberrest erkannt. Seine weitläufigen, faserigen Emissionen entstehen, indem die immer noch expandierende Stoßwelle der Todesexplosion eines massereichen Sterns die umgebende interstellare Materie auffegt.

Seine Entfernung beträgt nach übereinstimmenden Schätzungen mehr als 600 Lichtjahre, das entspricht einem Durchmesser von etwa 100 Lichtjahren. Das Licht der Supernovaexplosion, die RCW 114 erzeugte, hätte demnach die Erde vor rund 20.000 Jahren erreicht. Kürzlich wurde ein Neutronenstern oder Pulsar als Überrest des kollabierten Sternkerns erkannt.

Zur Originalseite