Der rotierende Pulsar im Krebsnebel

Der Krebspulsar ist von weißen, wirbelnden Wolken umgeben. Außen herum sind violette Wolken angeordnet. Das Bild wurde eingefärbt.

Bildcredit: NASA: Röntgen: Chandra (CXC), optisch: Hubble (STScI), Infrarot: Spitzer (JPL-Caltech)

Im Zentrum des Krebsnebels liegt ein magnetischer Neutronenstern von der Größe einer Stadt. Er rotiert 30 Mal pro Sekunde. Das Objekt ist auch als Krebspulsar bekannt. Es ist der helle Fleck im Gaswirbel, der sich im Nebelzentrum befindet. Das spektakuläre Bild ist zwölf Lichtjahre breit. Es zeigt leuchtendes Gas, Höhlungen und wirbelnde Filamente mitten im Krebsnebel.

Das Bild ist aus Aufnahmen in mehreren Wellenlängen zusammengesetzt: Das Weltraumteleskop Hubble fotografiert im sichtbaren Licht (lila), das Röntgenteleskop Chandra im Röntgenbereich (blau) und das Weltraumteleskop Spitzer im infraroten Wellenlängenbereich (rot).

Wie ein kosmischer Dynamo liefert der Krebspulsar die Energie für die Emissionen des Nebels. Er jagt Stoßwellen durch das umgebende Material und beschleunigt Elektronen auf spiralförmigen Bahnen.

Der rotierende Pulsar hat mehr Masse als die Sonne und der Dichte eines Atomkerns. Er ist der kollabierte Kern eines massereichen Sterns, der explodierte. Die äußeren Teile des Krebsnebels sind die Überreste des Gases, aus dem der Stern bestand. Sie dehnen sich aus. Die Supernova-Explosion wurde auf dem Planeten Erde im Jahr 1054 von Menschen bezeugt.

Erforsche das Universum: APOD-Zufallsgenerator

Zur Originalseite

Der Orionnebel im sichtbaren und infraroten Licht

Der Orionnebel ist hier in sichtbarem und infrarotem Licht dargestellt. Die vielen Staubfäden, die auf Bildern in sichtbarem Licht dunkel wirken, leuchten hier hell.

Bildcredit und Bildrechte: Infrarot: NASA, Weltraumteleskop Spitzer; Sichtbares Licht: Oliver Czernetz, Siding Spring Obs.

Der Große Orion Nebel ist ein bunter Ort. Mit dem bloßen Auge sieht man einen ausgefransten Fleck im Sternbild Orion. Mit einer langen Belichtungszeit zeigen Bilder in mehreren Wellenlängen wie dieses den Orionnebel als eine Nachbarschaft aus jungen Sternen, heißen Gasen und dunklem Staub. Dieses digitale Komposit besteht nicht nur aus drei Farben des sichtbaren Lichts, sondern auch aus vier Farben infraroter Strahlung, die vom Weltraumteleskop Spitzer der NASA aufgenommen wurden. Spitzer befindet sich im Erdorbit.

Die Energie, die den Orionnebel (M42) weitestgehend antreibt, stammt vom Trapez. Es sind vier der hellsten Sterne im Nebel. Viele der sichtbaren Filamente sind Stoßwellen – Fronten, an denen schnelle Materie auf langsames Gas trifft. Der Orionnebel durchmisst etwa 40 Lichtjahre und befindet sich etwa 1500 Lichtjahre von der Sonne entfernt im selben Spiralarm unserer Galaxis.

Zur Originalseite

LDN 1471: Eine vom Wind geformte Sternenhöhle

Um einen hellen Stern in der Bildmitte mit langen Zacken verläuft eine Stoßwelle nach links unten. Die Stoßwelle hat die Form eines Bogens, der in der Mitte breiter und heller ist.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Wer oder was schuf diese parabolische Struktur? Diese beleuchtete Höhlung ist als LDN 1471 bekannt. Sie wurde von dem gerade entstehenden Stern geformt. Der Stern ist die helle Lichtquelle am Scheitel der Parabel. Dieser Protostern verströmt gerade einen starken Sternwind. Er wechselwirkt mit dem umgebenden Material in der Perseus-Molekülwolke und hellt es auf.

Wir sehen nur eine Seite der Höhlung. Die andere Seite liegt hinter dunklem Staub. Die parabolische Form kommt daher, dass sich der Sternwind kegelförmig aufweitet, während er mit der Zeit die Höhlung in die Wolke bläst.

Auf der anderen Seite des Protosterns gibt es zwei weitere Strukturen, es sind sogenannten Herbig-Haro Objekte. Auch sie entstehen durch die Wechselwirkung des Sternwinds mit dem Material in der Umgebung. Die Ursache für die Rillen an den Wänden des Hohlraums ist jedoch nach wie vor unbekannt.

Das Bild stammt vom Weltraumteleskop Hubble der NASA und ESA. Ursprünglich entdeckte das Weltraumteleskop Spitzer die Struktur.

Erforsche das Universum: APOD-Zufallsgenerator

Zur Originalseite

NGC 602: Auster-Sternhaufen

Um einen Sternhaufen ist eine Gaswolke ausgebreitet, die wie eine Auster aussieht. Das Rollover-Bild zeigt denselben Haufen nicht nur im sichtbaren Licht, sondern auch im Röntgen- und Infrarotbereich.

Bildcredit: Röntgen: Chandra: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Sichtbares Licht: Hubble: NASA/STScI; Infrarot: Spitzer: NASA/JPL-Caltech

Die Wolken sehen wie eine Muschel aus und die Sterne wie Perlen – aber es gibt noch viel mehr zu entdecken! Gegen den Rand der Kleinen Magellanschen Wolke, einer Satellitengalaxie, die rund 200 Tausend Lichtjahre entfernt ist, liegt der 5 Millionen Jahre alte Sternhaufen NGC 602.

In diesem beeindruckenden Hubble-Bild, das mit Röntgenbildern des Chandra Observatory und Infrarotbildern des Spitzer-Teleskops ergänzt wurde, sieht man NGC 602 umgeben von seiner Geburtshülle aus Gas und Staub.

Fantastische Rillen und zurückgeschleudertes Gas deuten darauf hin, dass energiereiche Strahlung und Schockwellen der massereichen jungen Sterne in NGC 602 das staubige Material abgetragen und den Prozess der Sternentstehung ausgelöst haben, der sich vom Zentrum des Sternhaufens entfernt.

Bei der geschätzten Entfernung der Kleinen Magellanschen Wolke erstreckt sich das Bild über etwa 200 Lichtjahre, aber eine beeindruckende Auswahl an Hintergrundgalaxien ist in dieser gestochen scharfen Ansicht ebenfalls zu sehen. Die Hintergrundgalaxien befinden sich Hunderte von Millionen Lichtjahren – oder mehr – hinter NGC 602.

Zur Originalseite

Zeta Oph: Entlaufener Stern

Links neben dem Stern in der Mitte leuchtet ein roter Nebelschleier mit grünen Enden, der wie eine Bugwelle um den Stern gekrümmt ist.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer

Dieses Infrarotporträt zeigt den entlaufenden Stern Zeta Ophiuchi. Er schiebt eine bogenförmige interstellare Bugstoßwelle vor sich her wie ein Schiff, das durch die kosmische See pflügt.

Der bläuliche Stern Zeta Oph ist etwa 20-mal massereicher als die Sonne. Auf der Falschfarbenansicht liegt er nahe der Bildmitte und bewegt sich mit 24 Kilometern pro Sekunde nach links. Sein starker Sternwind eilt ihm voraus. Er komprimiert und erhitzt das staubige interstellare Material. Dabei entsteht die gekrümmte Stoßfront.

Was brachte diesen Stern in Bewegung? Zeta Oph war wahrscheinlich einst Teil eines Doppelsternsystems. Sein Begleitstern war wohl massereicher und hatte daher eine kürzere Existenz. Als der Begleiter als Supernova explodierte und dabei enorm viel Masse verlor, wurde Zeta Oph aus dem System geschleudert.

Zeta Oph ist etwa 460 Lichtjahre entfernt und leuchtet 65.000-mal heller als die Sonne. Er wäre einer der hellsten Sterne am Himmel, wäre er nicht von undurchsichtigem Staub umgeben. Das Bild ist etwa 1,5 Grad breit. Das sind bei der geschätzten Entfernung von Zeta Ophiuchi 12 Lichtjahre.

Im Jänner 2020 schaltete die NASA das Weltraumteleskop Spitzer in den Sicherheitsmodus. Damit endete seine erfolgreiche Erforschung des Universums im Infrarotbereich. Sie dauerte 16 Jahre.

Zur Originalseite

Frühere und künftige Sterne in Andromeda

Das Bild zeigt M31, die Andromedagalaxie, sowohl im infraroten Licht, das orange gefärbt ist, als auch im sichtbaren Licht, das weiß und blau gefärbt ist.

Bildcredit: NASA, NSF, NOAJ, Hubble, Subaru, Mayall, DSS, Spitzer; Bearbeitung und Bidrechte: Robert Gendler und Russell Croman

Dieses Bild von Andromeda zeigt nicht nur, wo jetzt Sterne sind, sondern auch, wo einmal Sterne sein werden. Die große, schöne Andromedagalaxie M31 ist eine Spiralgalaxie, sie ist etwa 2,5 Millionen Lichtjahre entfernt. Dieses Kompositbild von Andromeda entstand aus Bilddaten von Observatorien auf der Erde und im Weltraum, die Wellenlängen liegen innerhalb und außerhalb des sichtbaren Lichts.

Das sichtbare Licht zeigt, wo jetzt Sterne in M31 sind, dargestellt in weißen und blauen Farbtönen und aufgenommen mit den Teleskopen Hubble, Subaru und Mayall. Das Infrarotlicht zeigt, wo bald die künftigen Sterne von M31 entstehen, abgebildet in orangefarbenen Tönen und aufgenommen mit dem NASA-Weltraumteleskop Spitzer.

Im Infrarotlicht sind gewaltige Staubbahnen erkennbar, die von Sternen in den Spiralarmen der Andromedagalaxie aufgewärmt werden. Dieser Staub markiert das umfangreiche interstellare Gas der Galaxie. Es ist das Rohmaterial für künftige Sternbildung.

Die neuen Sterne entstehen wahrscheinlich im Laufe der nächsten hundert Millionen Jahre. Das ist lange bevor Andromeda in etwa 5 Milliarden Jahren mit unserer Milchstraßengalaxie verschmilzt.

Zur Originalseite

Methan auf fernem Exoplaneten entdeckt

Links unten leuchtet ein kleiner roter Stern, in der Mitte ist eine kleinere Sichel eines Mondes, rechts füllt die beleuchtete Sichel eines Planeten das halbe Bild.

Illustrationscredit: Ahmad Jabakenji (ASU Libanon, Nordstern Weltraumkunst); Daten: NASA, ESA, CSA, JWST

Wo könnte es sonst noch Leben geben? Eine der großen offenen Fragen der Menschheit, nämlich die Suche nach Planeten, auf denen es vielleicht extrasolares Leben gibt, kam 2019 einen großen Schritt voran: In der Atmosphäre des fernen Exoplaneten K2-18b wurde eine beträchtliche Menge Wasserdampf entdeckt.

Der Planet und sein Elternstern K2-18 liegen etwa 124 Lichtjahre entfernt im Sternbild Löwe (Leo). Der Exoplanet ist deutlich größer und massereicher als unsere Erde, doch er kreist in der bewohnbaren Zone seines Heimatsterns. K2-18 ist zwar rötlicher als unsere Sonne, leuchtet aber am Himmel von K2-18b ähnlich hell wie die Sonne am Himmel der Erde.

Die Entdeckung von Wasser in der Atmosphäre im Jahr 2019 gelang mit Daten dreier Weltraumteleskope: Hubble, Spitzer und Kepler. Diese Teleskope zeichneten die Absorption der Farben von Wasserdampf auf, während sich der Planet vor seinem Stern vorbeibewegte.

2023 wurden bei weiteren Beobachtungen durch das Weltraumteleskop Webb im Infrarotlicht Hinweise auf weitere Moleküle entdeckt, die auf Leben hindeuten, zum Beispiel Methan.

Die Illustration zeigt rechts den Exoplaneten K2-18b, der von einem Mond (Mitte) umkreist wird. Beide umrunden zusammen den roten Zwergstern links unten.

Zur Originalseite

Die Sombrerogalaxie in Infrarot

Mitten im Bild schwebt ein rosafarbener Ring um eine blau leuchtende Wolke.

Bildcredit: R. Kennicutt (Steward Obs.) et al., SSC, JPL, Caltech, NASA

Dieser schwebende Ring ist so groß wie eine Galaxie. Eigentlich ist er eine Galaxie – oder zumindest ein Teil davon: Es ist die fotogene Sombrerogalaxie, eine der größten Galaxien im nahen Virgo-Galaxienhaufen. Das dunkle Band aus Staub, das in sichtbarem Licht den mittleren Abschnitt der Sombrerogalaxie verdeckt, strahlt hell im Infrarotlicht.

Dieses digital geschärfte Bild wurde mit dem Weltraumteleskop Spitzer im Orbit aufgenommen. Es zeigt das infrarote Leuchten, das in Falschfarben über ein Bild des Weltraumteleskops Hubble in sichtbarem Licht gelegt wurde.

Die Sombrerogalaxie ist auch als M104 bekannt. Sie ist etwa 50.000 Lichtjahre groß und 28 Millionen Lichtjahre entfernt. M104 seht ihr mit einem kleinen Teleskop im Sternbild Jungfrau.

Zur Originalseite