Sonnenfleckenschloss

Hinter der Silhouette einer Ruine leuchtet eine gelborangefarbene Sonne in der Dämmerung.

Bildcredit und Bildrechte: Jens Hackmann

Jeder Tag kann ein schönes Ende haben, wenn die Sonne am westlichen Horizont untergeht. Diese Woche bot die untergehende Sonne zusätzlich Sonnenflecken, die man mit bloßem Auge sehen konnte, weil riesige aktive Regionen über die abgedunkelte, rötliche Sonnenscheibe rotierten.

Dieses Bild wurde am 7. November mit Teleobjektiv fotografiert. Es zeigt in der Sonnenmitte Flecken der Aktiven Region 1339. Die Aktive Region 1339 ist größer als Jupiter. Sie sorgte am 3. November für eine mächtige Sonnenfackel der Klasse X.

Im Vordergrund steht die dramatische Silhouette der Turmruine einer mittelalterlichen Burg. Sie steht in Igersheim in Deutschland. Traditionell ist sie als Burg Neuhaus bekannt. Doch für diese gut komponierte Szenerie könnte man sie in „Sonnenfleckenschloss“ umbenennen.

Zur Originalseite

Die orangefarbene Sonne sickert

Bildcredit und Bildrechte: Bruno Sánchez-Andrade Nuño et al. (IAG und MPS, NRL)

Die Oberfläche der Sonne verändert sich ständig. Dieser Film zeigt, wie die Oberfläche der Sonne in nur einer Stunde sickert. Die Photosphäre der Sonne hat Tausende Beulen, sie werden als Granulen bezeichnet. Üblicherweise hat sie auch ein paar dunkle Senken, sogenannte Sonnenflecken.

Dieser Zeitrafferfilm zeigt den Sonnenfleck 875 in der Mitte. Er wurde 2006 vom Vacuum Tower Telescope auf den spanischen Kanarischen Inseln aufgenommen. Mit einer adaptiven Optik wurden Details mit einem Durchmesser von weniger als 500 Kilometern aufgelöst.

Jede der vielen Granulen ist so groß wie ein Kontinent auf der Erde, aber viel kurzlebiger. Eine Granule ändert ihre Form in nur einer Stunde und kann in diesem Zeitraum sogar völlig verschwinden. Heißer Wasserstoff steigt in der hellen Mitte einer Granule auf, kühlt ab und sinkt am dunklen Granulenrand in die Sonne zurück.

Dieser und ähnliche Filme erlauben Studierenden und Sonnenforschenden, die Entwicklung von Granulen und Sonnenflecken zu untersuchen. Dabei wollen sie herausfinden, wie magnetische Sonnenfleckenregionen mächtige Sonnenfackeln auswerfen.

Vor wenigen Tagen rotierte die größte Sonnenfleckengruppe der letzten Jahre auf die sichtbare Seite der Sonne.

Zur Originalseite

Ein malerischer Venustransit

Hinter Wolken zeichnet sich die Sonne am orangefarbenen Himmel ab, rechts ist der Planet Venus als dunklere Scheibe zu sehen.

Bildcredit und Bildrechte: David Cortner

Ein Durchgang der Venus vor der Sonne ist selten. Der Venusdurchgang 2004 war eines der am besten fotografierten Ereignisse in der Geschichte der Astronomie. In Europa und großen Teilen von Asien, Afrika und Nordamerika, wo man den Transit sehen konnte, entstand eine Flut wissenschaftlicher und künstlerischer Bilder.

Was die Wissenschaft betrifft, bestätigten Sonnenfotografen, dass das Tropfenphänomen tatsächlich eher von der Abbildungsqualität der Kamera oder des Teleskops abhängt als von der Atmosphäre der Venus.

Künstlerisch gesehen kann man die Bilder in Kategorien einteilen. Eine Kategorie zeigt den Transit vor der sehr detailreichen Sonne. Eine andere Kategorie zeigt Doppelzufälle, zum Beispiel Venus und ein Flugzeug als Silhouette vor der Sonne oder Venus und die Internationale Raumstation im niedrigen Erdorbit vor der Sonne. Eine dritte Bildkategorie zeigt ein zufälliges Arrangement interessanter Wolken. Dazu zählt dieses Bild, das im US-amerikanischen Bundesstaat North Carolina fotografiert wurde.

Der nächste Venustransit vor der Sonne findet im Juni 2012 statt.

Zur Originalseite

Komet und KMA auf der Sonne

Videocredit: SOHO, SDO, NASA, ESA

Hat hier ein Komet, der in die Sonne stürzte, eine Sonnenexplosion ausgelöst? Wahrscheinlich nicht. Letztes Wochenende stürzte ein Komet in die Sonne. Kurz darauf brach auf der anderen Seite der Sonne ein koronaler Massenauswurf (KMA) aus.

Die ersten beiden Teile dieses Videos zeigen die spektakuläre Entwicklung der Ereignisse. Die Aufnahmen stammen vom Satelliten SOHO in der Sonnenumlaufbahn. Dieselben Ereignisse wurden auch von beiden STEREO-Satelliten aufgenommen, welche die Sonne umkreisen.

Sonnennahe Kometen, die beim Vorbeiflug an der Sonne zerbrechen, sind alles andere als selten. Hunderte solcher Kometen wurden in den letzten Jahren katalogisiert. KMAs kommen sogar noch häufiger vor. Die drei Ereignisse, die in den acht Stunden dieses Zeitraffervideos auftraten, sind sogar eher kleinere Ereignissen. Daher sind Sonnenforschende ziemlich sicher, dass es zwischen den beiden Ereignisse keinen Zusammenhang gab.

Ein weiterer Grund für diese Einschätzung ist, dass KMAs durch rasche Veränderungen im Magnetfeld der Sonne entstehen. Solche Veränderungen kann ein kleiner Komet wohl nicht hervorrufen. Solche Zufälle sind bei hoher Sonnenaktivität – wie zum Beispiel jetzt – wahrscheinlicher als sonst.

Zur Originalseite

Asteroiden in der Nähe der Erde

Die Grafik zeigt links die neuen Abschätzungen von NEOWISE zur Häufigkeit mittelgroßer Asteroiden, rechts ist die alte Abschätzung aufgrund von Beobachtungen im sichtbaren Licht. In der Mitte ist die Sonne schematisch dargestellt, die Bahnen der inneren Planeten sind dünne weiße Linien, die Planeten selbst sind grüne Punkte, und die Asteroiden werden als rote Punkte schematisch dargestellt.

Illustrationscredit: NASA, JPL-Caltech, WISE

Diese Illustration zeigt Sonne und Planeten im inneren Sonnensystem. Jeder rote Punkt stellt einen Asteroiden dar. Die Himmelskörper sind nicht im korrekten Maßstab abgebildet,

Neue Ergebnisse von NEOWISE sind links zu sehen. NEOWISE ist der Teil der Mission WISE, der im Infrarotlicht nach Asteroiden sucht. Die neuen Ergebnisse links werden mit früheren Abschätzungen verglichen, was die Häufigkeit mittelgroßer oder größerer erdnaher Asteroiden aus Durchmusterungen in sichtbarem Licht betrifft.

Die gute Nachricht ist, dass es laut den neuen Abschätzungen aus den NEOWISE-Beobachtungen um 40 Prozent weniger erdnahe Asteroiden gibt, die größer als 100 Meter sind, als die Suche im sichtbaren Licht vermuten ließ. Die Ergebnisse von NEOWISE basieren auf Infrarotabbildungen. Sie sind auch genauer.

Gleich große Asteroiden, die von der Sonne aufgeheizt werden, strahlen die gleiche Menge an Infrarotlicht ab. Sie können aber sehr unterschiedliche Mengen an sichtbarem Sonnenlicht reflektieren, je nachdem, wie stark ihre Oberfläche reflektiert und wie hoch ihr Oberflächenalbedo ist. Dieser Effekt kann Durchmusterungen beeinflussen, die auf optischen Beobachtungen basieren.

Die Ergebnisse von NEOWISE reduzieren die geschätzte Anzahl der mittelgroßen erdnahen Asteroiden von etwa 35.000 auf 19.500. Doch der Großteil der Asteroiden ist immer noch unentdeckt.

Zur Originalseite

Gewaltige Sonnenfleckengruppe AR 1302 löst eine Eruption aus

Aus einem kleinen Sonnenfleck strömen rote Plasmafäden entlang von Magnetlinien aus der Sonne. Der Sonnenfleck ist so groß wie die Erde, die im gleichen Maßstab rechts oben eingefügt ist.

Bildcredit: jp-Brahic

Beschreibung: Eine der aktivsten Sonnenfleckengruppen der letzten Jahre wandert gerade über die Sonne. AR 1302 tauchte letzte Woche am Sonnenrand auf. Sie ist so groß, dass man sie ohne Teleskop sieht. Koronale Massenauswürfe von AR 1302 verursachten bereits starke geomagnetische Stürme und sehenswerte Polarlichter an beiden Polen der Erde.

Oben seht ihr, wie magnetisches Plasma über der Sonnenoberfläche hing. Zuvor hatte AR 1302 letzten Donnerstag eine Sonnenfackel der Klasse X ausgestoßen. Die eingefügte Erde zeigt den Größenvergleich.

Am Samstag wurde eine weitere Fackel der X-Klasse ausgestoßen, dennoch trafen bisher keine Eruptionen von AR 1302 direkt auf die Erde. Die Sonnenfleckengruppe AR 1302 entwickelt sich weiter, bleibt aber wahrscheinlich nächste Woche noch auf der Sonne sichtbar.

Galerie: Bilder der Sonnenfleckengruppe AR 1302
Zur Originalseite

Eine riesige Tsunami-Stoßwelle auf der Sonne

Der schwarzweiß dargestellte Ausschnitt der Sonne hat links am Sonnenrand einen sehr hellen Fleck, von dem sich eine Stoßwelle ausbreitet.

Bildcredit: NSO/AURA/NSF und das USAF-Forschungslabor

Beschreibung: So große Tsunamis gibt es auf der Erde nicht. 2006 erzeugte die riesige Sonnenfackel eines erdgroßen Sonnenflecks eine tsunamiartige Druckwelle, die sogar auf der Sonne spektakulär groß war.

Das Bild wurde mit einem Teleskop des Optical Solar Patrol Network (OSPAN) aufgenommen, das im US-amerikanischen New Mexico stationiert ist. Es zeigt eine Tsunamiwelle, die von der Aktiven Region AR 10930 ausgeht. Dabei entstand eine Stoßwelle, eine sogenannte Moreton-Welle. Diese Stoßwelle komprimierte und erhitzte Gase, zum Beispiel Wasserstoff in der Photosphäre der Sonne. Das führte zu einem kurzen, helleren Leuchten. Die Aufnahme wurde in einer speziellen roten Farbe aufgenommen, die von Wasserstoff abgestrahlt wird.

Die mächtige Stoßwelle fegte einige aktive Sonnenfilamente fort. Viele davon entstanden später neu. Der Sonnentsunami raste mit fast einer Million Kilometer pro Stunde über die Sonne und umkreiste sie in wenigen Minuten.

Zur Originalseite

Eine scharfe Ansicht der Sonne

Unten in der Bildmitte ist ein dunkler Sonnenfleck, um den orangebraune Schlieren verlaufen. Nach oben hin verlaufen die Schlieren in eine orangegelbe Granulation.

Credit: SST, Königlich Schwedische Akademie der Wissenschaften

Beschreibung: Hier ist eines der schärfsten Bilder, die je von der Sonne fotografiert wurden. Das umwerfende Bild zeigt viele Details eines dunklen Sonnenflecks am unteren Bildrand. Oben sind zahllose kochende Granulen wie Getreidekörner verteilt. Das Bild wurde 2002 mit dem schwedischen Sonnenteleskop aufgenommen. Das Teleskop auf der Kanarischen Insel La Palma betrieben wird.

Das hoch aufgelöste Bild wurde mit einer komplexen adaptiven Optik, digitaler Bildverschmelzung und weiteren Techniken bearbeitet. So wurde das Flimmern der Erdatmosphäre bestmöglich kompensiert.

Derzeit wandert eine Fleckengruppe über die Sonne, die so groß ist, dass vorsichtige Beobachter mit Augenschutz sie leicht sehen können – sogar ohne Vergrößerung.

Zur Originalseite