Visualisierung: Umfeld und Scheibe eines Schwarzen Lochs

Horizontal verläuft ein strukturiertes orangefarbenes Band. In der Mitte ist die Milchstraße zu sehen. Sie krümmt sich bis zum oberen Bildrand. Ein zweites Bild des orangefarbenen Bandes verläuft wie eine Sinuswelle über die untere Hälfte des Bildes, während ein zweites Bild der Milchstraße direkt darüber erscheint.

Visualisierungscredit: GSFC der NASA, J. Schnittman und B. Powell; Text: Francis J. Reddy (U. Maryland, NASA’s GSFC)

Wie sieht es aus, wenn man in ein gigantisches Schwarzes Loch stürzt? Dieses Bild ist eine Visualisierung mit Supercomputern. Es zeigt den ganzen Himmel aus der Sicht einer simulierten Kamera, die in ein Schwarzes Loch mit 4 Millionen Sonnenmassen stürzt. Das Schwarze Loch ist ähnlich wie jenes im Zentrum unserer Galaxis.

Die Kamera ist etwa 16 Millionen Kilometer vom Ereignishorizont des Schwarzen Lochs entfernt. Sie rast mit 62 Prozent der Lichtgeschwindigkeit nach innen. Die Gravitation führt zu Zerrspiegel-Effekten. Dadurch erscheint das Sternband der Milchstraße doppelt: als kompakte Schleife am oberen Rand und als Sekundärbild im unteren Teil des Bildes.

Der Mauspfeil über dem Bild zeigt zusätzliche Erklärungen. Mit solchen Visualisierungen kann man Schwarze Löcher auf eine Weise erforschen, die sonst nicht möglich wäre.

Zur Originalseite

M77: Spiralgalaxie mit aktivem Zentrum

Die aktive Galaxie M77 im Sternbild Walfisch füllt dieses Bild. Markante Staubspuren in den Spiralarmen sind von rötlichen Sternbildungsregionen und blauen Sternhaufen gesäumt. Das Zentrum leuchtet gelblich. Die Erscheinung der Galaxie ist sehr dicht.

Bildcredit: Hubble, NASA, ESA, L. C. Ho, D. Thilker

Was passiert im Zentrum der nahen Spiralgalaxie M77? Wir sehen die Galaxie ist von oben. Sie ist nur 47 Millionen Lichtjahre entfernt und liegt im Sternbild Walfisch (Cetus). Bei dieser Entfernung hat die schöne Inselwelt einen Durchmesser von etwa 100.000 Lichtjahren.

M77 ist auch als NGC 1068 bekannt. Sie hat einen kompakten und sehr hellen Kern. Astronom*innen erforschen dort die Geheimnisse massereicher Schwarzer Löcher in aktiven Seyfert-Galaxien. M77 und ihr aktiver Kern strahlen hell in einem breiten Spektrum. Es reicht von Röntgen– und Ultraviolettstrahlung bis hin zu sichtbarem Licht, Infrarot und Radiowellen.

Dieses scharfe Bild von M77 stammt vom Hubble-Weltraumteleskop von NASA und ESA. Es zeigt Details der gewundenen Spiralarme, die von roten Staubwolken und blauen Sternhaufen gesäumt werden. Alles umkreist das helle, weiße, leuchtende Zentrum der Galaxie.

Zur Originalseite

Hubble zeigt einen hufeisenförmigen Einstein-Ring

Um eine elliptische gelbe Galaxie biegt sich ein blauer Ring. Es ist das verzerrte Abbild einer Galaxie, die viel weiter entfernt ist. Die gelbe Galaxie im Vordergrund wirkt dabei wie eine Linse, die das Licht bricht.

Bildcredit: ESA/Hubble und NASA

Was ist groß und blau und kann sich um eine ganze Galaxie biegen? Die Fata Morgana einer Gravitationslinse. Im Vordergrund liegt eine massereiche elliptische Galaxie (leuchtend rote Galaxie: LRG). Sie verzerrt mit ihrer Gravitation das Licht der blauen Galaxie, die viel weiter entfernt ist, zu einem leuchtenden Bogen.

Normalerweise führt so eine Verbiegung des Lichtwegs zu zwei getrennten Bildern der weiter entfernten Galaxie. Doch in diesem Fall ist die räumliche Anordnung der Linse so genau, dass die Galaxie im Hintergrund zu einem Hufeisen verzerrt wird. Die Form ist sogar fast ein geschlossener Einsteinring.

LRG 3-757 wurde zwar schon 2007 in den Daten der Sloan Digital Sky Survey (SDSS) entdeckt. Doch dieses Bild wurde erst bei einer nachfolgenden Beobachtung mit dem Weltraumteleskop Hubble mit der Wide Field Camera 3 aufgenommen.

Die zentrale Galaxie, welche die Linse bildet, wurde kürzlich erneut untersucht. Dabei zeigte sich, dass sie ein einzelnes Schwarzes Loch enthält. Es soll 36 Milliarden Sonnenmassen besitzen.

Zur Originalseite

GW250114: Rotierende Schwarze Löcher kollidieren

Die Illustration der Künstlerin Aurore Simonnet zeigt ein Schwarzes Loch vor seiner Verschmelzung.

Illustrationscredit: Aurore Simonnet (SSU/EdEon), LVK, URI; LIGO-Arbeitsgemeinschaft

Es war das stärkste Signal von Gravitationswellen, das man je gemessen hat. Was zeigte es? GW250114 wurde Anfang des Jahres von beiden Armen von LIGO in Washington und Louisiana in den USA entdeckt. LIGO steht für Laser Interferometer Gravitational-Wave Observatory. Die Analyse ergab, dass bei dem Ereignis zwei Schwarze Löcher zu einem größeren Schwarzen Loch mit etwa 63 Sonnenmassen verschmolzen. Jedes einzelne hatte davor etwa 33 Sonnenmassen.

Das Ereignis fand zwar rund eine Milliarde Lichtjahre entfernt statt. Doch das Signal war so stark, dass erstmals der Spin aller Schwarzen Löcher genau bestimmt werden konnte. Außerdem wurde besser als je zuvor bestätigt, dass die gesamte Fläche des Ereignishorizonts um das kombinierte Schwarze Loch größer war als die der verschmelzenden Schwarzen Löcher. Genau so wurde es vorhergesagt.

Diese Illustration einer Künstlerin zeigt eine Ansicht aus der Nähe eines Schwarzen Lochs vor der Kollision.

Zur Originalseite

Das Trapez mitten im Orion

Das Innere des Orionnebels füllt das Bild. In der Mitte leuchten vier helle Sterne, sie sind das Trapez. Gemeinsam bringen sie den Orionnebel zum Leuchten.

Bildcredit: Bilddaten: Hubble-Vermächtnisarchiv, Bearbeitung: Robert Gendler

Was befindet sich im Zentrum des Orion? Das Trapez: Das sind die vier hellen Sterne mitten in diesem scharfen kosmischen Porträt. Diese Sterne befinden sich in einer Region, die einen Radius von etwa 1,5 Lichtjahren hat. Sie dominieren das Zentrum des dichten Sternhaufens im Orionnebel. Ultraviolette, ionisierende Strahlung der Trapezsterne – vor allem des hellsten Sterns Theta-1 Orionis C – sorgt für das gesamte sichtbare Leuchten in dieser komplexen Region, in der Sterne entstehen.

Der Sternhaufen im Orionnebelhaufen ist etwa drei Millionen Jahre alt und war in seiner frühen Phase noch kompakter. Eine dynamische Untersuchung legt nahe, dass es in der Anfangszeit zu wilden Sternkollisionen gekommen sein könnte. Dabei entstand vielleicht ein Schwarzes Loch mit mehr als der 100-fachen Masse unserer Sonne.

Wenn es im Haufen ein Schwarzen Loch gibt, könnte das die ungewöhnlich hohen Geschwindigkeiten der Trapezsterne erklären. Der Orionnebel ist rund 1.500 Lichtjahre entfernt. Damit gehört er zu den erdnächsten Orten, an denen ein Schwarzes Loch vermutet wird.

Zur Originalseite

Der Kugelsternhaufen Omega Centauri

Der Kugelsternhaufen Omega Centauri füllt das Bild. Er enthält rote Riesensterne mit gelblicher Färbung.

Bildcredit und Bildrechte: Datenbeschaffung – SkyFlux-Team, Bearbeitung – Leo Shatz

Im Kugelsternhaufen Omega Centauri drängen sich etwa 10 Millionen Sterne in einem Volumen von etwa 150 Lichtjahren Durchmesser zusammen. Diese Sterne sind viel älter als unsere Sonne. Omega Centauri ist 15.000 Lichtjahre entfernt, er ist der größte und hellste von etwa 200 bekannten Kugelsternhaufen, die den Halo unserer Milchstraße durchstreifen. Er trägt auch die Bezeichnung NGC 5139.

Die meisten Sternhaufen bestehen aus Sternen, die gleich alt und gleich zusammengesetzt sind. Doch der rätselhafte Omega Cen enthält verschiedene Sternpopulationen, die unterschiedlich alt sind und verschiedene chemische Zusammensetzungen haben. Tatsächlich könnte Omega Cen der Überrest des Kerns einer kleinen Galaxie sein, die mit der Milchstraße verschmolzen ist.

Die roten Riesensterne von Omega Centauri sind gelblich gefärbt. Daher erkennt man sie leicht auf diesem scharfen Teleskopbild. Mit dem Weltraumteleskop Hubble wurde eine zweijährige Studie durchgeführt. Sie brachte Hinweise auf ein massereiches Schwarzes Loch nahe beim Zentrum von Omega Centauri.

Zur Originalseite

IXPE erforscht einen Strahl aus einem Schwarzen Loch

Ein weißer wirbelnder Strahl steigt auf und endet in einer gelb-orange-roten Scheibe, die um ein Schwarzes Loch rotiert.

Illustrationscredit: NASA, Pablo Garcia

Wie erzeugen Schwarze Löcher Röntgenstrahlung? Diese Frage stellt man sich seit Langem. Kürzlich kam man der Antwort durch Daten des NASA-Satelliten IXPE erheblich näher. Röntgenstrahlen können nicht aus einem Schwarzen Loch austreten. Sie können aber in der energetischen Umgebung in der Nähe entstehen, vor allem durch einen Strahl von Teilchen, die sich nach außen bewegen.

Die Galaxie BL Lac ist ein Blazar. Als man das Röntgenlicht in der Nähe des sehr massereichen Schwarzen Lochs im Zentrum der Galaxie BL Lac beobachtete, stellte man fest, dass diese Röntgenstrahlen keine eindeutige Polarisation aufweisen. Das ist zu erwarten, wenn sie eher von energiereichen Elektronen als von Protonen erzeugt werden.

Die künstlerische Illustration zeigt einen starken Strahl. Er geht von einer orangefarbenen Akkretionsscheibe aus, die das Schwarze Loch umkreist. Wenn man hochenergetische Prozesse im Universum besser versteht, hilft uns das, ähnliche Prozesse auf unserer Erde oder oder in ihrer Nähe zu verstehen.

Setz alles zusammen: Astronomie-Puzzle des Tages

Zur Originalseite

Die doppelt gekrümmte Welt binärer Schwarzer Löcher

Quelle der wissenschaftlichen Visualisierung: NASA, GSFC, Jeremy Schnittman und Brian P. Powell; Text: Francis J. Reddy

Wenn ein Schwarzes Loch seltsam aussieht, wie seltsam sind dann erst zwei? HIer kreist ein Paar supermassereicher Schwarzer Löcher umeinander. Die detaillierte Computeranimation zeigt, wie sich Lichtstrahlen aus ihren Akkretionsscheiben ihren Weg durch die gekrümmte Raumzeit bahnen, die von extremer Gravitation erzeugt wird.

Die simulierten Akkretionsscheiben sind in Falschfarben dargestellt. Rot für die Scheibe um ein Schwarzes Loch mit 200 Millionen Sonnenmassen, Blau für die Scheibe um ein Schwarzes Loch mit 100 Millionen Sonnenmassen. Bei diesen Massen würden allerdings beide Akkretionsscheiben das meiste Licht im Ultraviolett abstrahlen.

Das Video zeigt uns jedes der Schwarzen Löcher gleichzeitig von beiden Seiten. Rotes bzw. blaues Licht von beiden Schwarzen Löchern ist im innersten Ring zu sehen. Dieser Ring wird Photonensphäre genannt. Er liegt nahe an den Ereignishorizonten.

In den vergangenen zehn Jahren entdeckte man Gravitationswellen von kollidierenden Schwarzen Löchern. Doch das Verschmelzen supermassereicher Schwarzer Löcher konnte bisher noch nicht nachgewiesen werden.

Bei der NASA ist Woche der Schwarzen Löcher!

Zur Originalseite