Die Einsteinkreuz-Gravitationslinse

Die sehr blasse Galaxie im Bild hat scheinbar vier sehr helle Kerne. Diese gehören jedoch nicht zur Galaxie, sondern sind das Licht eines Quasars, der weit dahinter liegt. Das Objekt ist als Einsteinkreuz bekannt.

Bildcredit und Lizenz: NSF, NOIRLab, AURA, WIYN; Bearbeitung: J. Rhoads (Arizona State U.) et al.

Die meisten Galaxien haben nur einen Kern. Hat diese Galaxie vier davon? Die Antwort auf diese Frage scheint eigenartig, aber der Schein trügt. Astronom*innen schließen aus diesem Bild, dass der Kern der umgebenden Galaxie überhaupt nicht sichtbar ist. Vielmehr stammt das Licht des „vierblättrigen Kleeblatts“ in der Mitte eigentlich von einem Quasar, der dahinter liegt.

Das Gravitationsfeld der vorne liegenden Galaxie lenkt die Lichtstrahlen des weiter entfernten Quasars um. Wir kennen das auch von optischen Linsen. Es kann dazu führen, dass man von einem Objekt vier Einzelbilder sieht. Diese Art von Trugbild erhalten wir nur, wenn ein Quasar und das Zentrum einer massereichen Galaxie genau in einer Sichtlinie liegen.

Wir kennen das Phänomen ist als Gravitationslinseneffekt. Die oben gezeigte Galaxie ist das Einsteinkreuz. Die einzelnen Abbildungen im Einsteinkreuz sind unterschiedlich hell, was vielleicht noch verwunderlicher ist. Einzelne Sterne der vorderen Galaxie üben durch ihre Gravitation einen zusätzlichen Mikrolinseneffekt aus, was die Helligkeit verstärkt.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Cir X-1: Strahlströme im Afrikanebel

Der Nebel erinnert ein bisschen an Afrika. Das komplizierte Radiobild zeigt Ringe und Strahlströme.

Bildcredit: J. English (U. Manitoba) und K. Gasealahwe (U. Kapstadt), SARAO, MeerKAT, ThunderKAT; Wissenschaft: K. Gasealahwe, K. Savard (U. Oxford) et al.; Text: J. English und K. Savard

Wie lange dauert es, ehe bei einem neu entstandenen Neutronenstern Strahlströme entstehen? Der Afrika-Nebel gibt uns darauf Hinweise: Dieser Supernova-Überrest umgibt Circinus X-1 (auch: Cir X-1). Das ist ein Neutronenstern, der Röntgenstrahlung aussendet. Auch seinen Begleitstern ist im Bild.

Das Bild stammt von der ThunderKAT-Arbeitsgemeinschaft am MeerKAT-Radioteleskop in Südafrika. Es zeigt die helle Kernregion und eine keulenförmige Struktur der aktiven Strahlen von Cir X-1 im Nebel. Sein junges Alter beträgt gerade einmal 4600 Jahre. Damit könnte Cir X-1 die „kleine Schwester“ des Mikroquasars SS433* sein.

Aktuelle Entdeckungen werfen ein neues Licht auf die Geschichte des Systems: Aus einem ringförmigen Loch im oberen rechten Eck des Nebels steigen blasenartige Strukturen auf. Die Blasen und die Anwesenheit eines Rings links unten deutet darauf hin, dass es schon früher Strahlen gab. Simulationen mit Computern zeigen, dass diese Strahlströme schon 100 Jahre nach der Supernovaexplosion entstanden sind, und dass sie über 1000 Jahre lang aktiv blieben. Überraschend ist, dass diese Jets um vieles stärker sein müssten, um die beobachteten Blasen zu erzeugen, als man bisher bei jungen Neutronensternen vermutete.

Zur Originalseite

Eine Karte des beobachtbaren Universums

Ein Viertelkreis ist unten an der Spitze hell, geht von innen nach außen in rot über, dann blau, außen am Kreisbogen ist die Hintergrundstrahlung abgebildet.

Bildcredit und Bildrechte: B. Ménard und N. Shtarkman; Daten: SDSS, Planck, JHU, Sloan, NASA, ESA

Was wäre, wenn wir bis zum Rand des beobachtbaren Universums sehen könnten? Wir würden Galaxien hinter Galaxien sehen und dahinter nochmals Galaxien, und dahinter, nun ja, Quasare, das sind die hellen Zentren weit entfernter Galaxien.

Für ein besseres Verständnis der allergrößten Größenordnungen, die der Menschheit zugänglich sind, wurde eine Karte aller Galaxien und Quasare erstellt, die von 2000 bis 2020 mit der Sloan Digital Sky Survey (eine digitale Himmelsdurchmusterung) entdeckt wurden. Die Karte reicht bis zum Rand des beobachtbaren Universums.

Das Bild zeigt einen Keil der Karte mit ungefähr 200.000 Galaxien und Quasaren. Sie überblickt einen Zeitraum, der 12 Milliarden Jahre in die Vergangenheit reicht, das entspricht der kosmologischen Rotverschiebung 5.

Fast jeder Punkt im nahen unteren Teil der Illustration zeigt eine Galaxie. Die Rottöne zeigen die zunehmende Rotverschiebung und Entfernung. Ebenso zeigt fast jeder Punkt im obern Teil einen fernen Quasar. Blau schattierte Punkte sind näher als rote. Viele Entdeckungen zeigen deutlich, wie die Gravitation zwischen Galaxien dazu führte, dass sich das nahe Universum zu immer ausgeprägteren Faserstrukturen verdichtete als das ferne Universum.

Detailreichere Karte des heutigen APOD

Zur Originalseite

Illustration: Ein früher Quasar

Künstlerische Darstellung eines sehr Quasars im frühen Universum. In der Mitte ist ein heller Bereich, um den orangefarbenes und rotes Gas wirbelt. Nach links oben schießt ein heller Strahl.

Illustrationscredit und Lizenz: ESO, M. Kornmesser

Wie sahen die ersten Quasare aus? Von den Quasaren, die uns am nächsten sind, wissen wir heute, dass sie sehr massereiche Schwarze Löcher in den Zentren aktiver Galaxien waren. Gas und Staub, die auf einen Quasar fallen, leuchten hell und überstrahlen manchmal ihre ganze Heimatgalaxie.

Doch Quasare aus den ersten Milliarden Jahren des Universums sind noch rätselhafter. Jüngste Daten machen diese künstlerische Darstellung möglich. Sie zeigt, wie ein Quasar aus der Frühzeit des Universums vielleicht aussah: Im Zentrum ist ein massereiches Schwarzes Loch, das von Hüllen aus Gas und einer Akkretionsscheibe umgeben ist. Es stößt einen mächtigen Strahl aus.

Quasare gehören zu den fernsten Objekten, die wir sehen. Sie liefern der Menschheit einzigartige Information über das frühe Universum und den Bereich, der dazwischen liegt. Die ältesten Quasare, die wir derzeit kennen, haben eine Rotverschiebung von knapp 8 – das war nur 700 Millionen Jahre nach dem Urknall. Das Universum hatte nur ein paar Prozent seines heutigen Alters.

Zur Originalseite

Die Einsteinkreuz-Gravitationslinse

Das Einsteinkreuz im Sternbild Pegasus. Eine kleine schwache Galaxie mit vier hellen Punkten in der Mitte.

Bildcredit und Lizenz: J. Rhoads (Arizona State U.) et al., WIYN, AURA, NOIRLab, NSF

Beschreibung: Die meisten Galaxien haben einen einzigen Kern – hat diese Galaxie vier? Die seltsame Antwort führt Astronominnen und Astronomen zu dem Schluss, dass der eigentliche Kern der umgebenden Galaxie auf diesem Bild gar nicht sichtbar ist, sondern dass das Kleeblatt in der Mitte vielmehr Licht ist, das von einem Quasar im Hintergrund abgestrahlt wird. Das Gravitationsfeld der sichtbaren Galaxie im Vordergrund bricht das Licht des fernen Quasars in vier Einzelbilder.

Damit wir eine Fata Morgana wie diese sehen, muss der Quasar exakt hinter dem Zentrum einer massereichen Galaxie liegen. Der Effekt wird allgemein als Gravitationslinseneffekt bezeichnet, dieser spezielle Fall ist als Einsteinkreuz bekannt. Noch seltsamer ist, dass die relativen Helligkeiten der Bilder des Einsteinkreuzes schwanken, weil sie gelegentlich durch einen zusätzlichen gravitativen Mikrolinseneffekt einzelner Sterne in der Vordergrundgalaxie verstärkt werden.

Zur Originalseite

SS 433: Doppelstern-Mikroquasar


Animationscredit: DESY, Science Communication Lab

Beschreibung: SS 433 ist eines der exotischsten Sternsysteme, die wir kennen. Sein unscheinbarer Name entstand durch seinen Eintrag in einem Katalog von Milchstraßensternen, die eine für atomaren Wasserstoff charakteristische Strahlung aussenden. Sein auffälliges Verhalten stammt von einem kompakten Objekt – einem schwarzen Loch oder Neutronenstern –, um das sich eine Akkretionsscheibe mit Ausströmungen gebildet hat. Da die Scheibe und die Ausströmungen von SS 433 jenen um sehr massereiche schwarze Löcher in den Zentren ferner Galaxien ähneln, vermutet man, dass SS 433 ein Mikroquasar ist.

Dieses animierte Video basiert auf Beobachtungsdaten. Es zeigt einen massereichen, heißen, normalen Stern, der gemeinsam mit dem kompakten Objekt in einer Umlaufbahn gefangen ist. Zu Beginn des Videos sieht man, wie durch Gravitation Materie vom normalen Stern losgerissen wird, die auf eine Akkretionsscheibe fällt. Der Zentralstern stößt Strahlen aus ionisiertem Gas in entgegengesetzte Richtungen aus – mit jeweils etwa einem Viertel der Lichtgeschwindigkeit.

Im nächsten Abschnitt zeigt das Video eine Aufsicht auf die ausströmenden Strahlen, die eine Präzessionsbewegung ausführen und dabei eine sich ausdehnende Spirale erzeugen. Danach sieht man die sich ausbreitenden Strahlen aus noch größerer Entfernung nahe dem Zentrum im Supernovaüberrest W50.

Vor zwei Jahren fand man mithilfe der HAWC-Detektoranordnung in Mexiko unerwartet heraus, dass SS 433 Gammastrahlen mit ungewöhnlich hoher Energie (im TeV-Bereich) aussendet. Doch es gibt weitere Überraschungen: Eine aktuelle Analyse von Archivdaten des NASASatelliten Fermi zeigt eine Gammastrahlenquelle, die – wie man hier sieht – von den Zentralsternen getrennt ist, und die aus bisher unbekannten Gründen Gammastrahlenpulse mit einer Periode von 162 Tagen aussendet – das entspricht der Präzessionsperiode der Strahlen von SS 433.

Lehrende und Studierende: Ideen für die Verwendung von APOD im Lehrsaal
Zur Originalseite

Neutrino trifft zeitgleich mit fernem Blazarstrahl ein

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: DESY, Labor für Wissenschaftskommunikation

Beschreibung: Mit Geräten, die unter dem Südpol der Erde tief im Eis eingefroren sind, hat die Menschheit anscheinend ein Neutrino aus dem fernen Universum entdeckt. Falls das bestätigt wird, markiert es den ersten eindeutigen Nachweis kosmologisch weit entfernter Neutrinos und den Beginn eines beobachteten Zusammenhangs zwischen energiereichen Neutrinos und kosmischer Strahlung, die durch mächtige Ströme aus aufflackernden Quasaren (Blazare) erzeugt werden.

Nachdem der antarktische IceCube-Detektor im September 2017 ein energiereiches Neutrino gemessen hatte, begannen viele der weltweit größten Observatorien mit der Suche nach seinem Gegenstück im sichtbaren Licht. Und sie fanden es. Ein solches Gegenstück wurde unter anderem vom Weltraumobservatorium Fermi der NASA ermittelt, welches herausfand, dass der Gammastrahlenblazar TXS 0506+056 in der richtigen Richtung stand und die Gammastrahlen eines Blitzes fast exakt zeitgleich mit dem Neutrino eintrafen. Obwohl diese und weitere Übereinstimmungen von Position und Zeit statistisch stark sind, warten Astronomen weitere ähnliche Zusammenhänge zwischen Neutrinos und Blazar-Licht, um ganz sicher zu gehen.

Diese künstlerische Darstellung zeigt einen Teilchenstrahl, der von einem Schwarzen Loch im Zentrum eines Blazars ausströmt.

Zur Originalseite

Die Einsteinkreuz-Gravitationslinse

Mitten im Bild leuchtet ein Bündel aus vier Lichtpunkten, das von einem blassen Nebel umgeben ist. Es ist das Einsteinkreuz. Darin bricht eine Galaxie das Licht eines Quasars dahinter in vier Bilder.

Bildcredit und Bildrechte: J. Rhoads (Arizona State U.) et al., WIYN, AURA, NOAO, NSF

Die meisten Galaxien haben einen einzigen Kern. Hat diese Galaxie vier? Forschende der Astronomie kommen zu dem seltsamen Schluss, dass der Kern der umgebenden Galaxie auf diesem Bild nicht einmal sichtbar ist. Stattdessen besteht das Kleeblatt in der Mitte aus Licht, das ein Quasar im Hintergrund abstrahlt.

Das Gravitationsfeld der Galaxie, die man vorne sieht, bricht das Licht des fernen Quasars in vier Einzelbilder. Für so eine Illusion muss der Quasar exakt hinter dem Zentrum der massereichen Galaxie liegen. Der Effekt wird als Gravitationslinse bezeichnet. Diese spezielle Linse ist als Einsteinkreuz bekannt. Noch seltsamer ist, dass die relative Helligkeit der Bilder im Einsteinkreuz variiert. Das geschieht, weil die Helligkeit gelegentlich durch zusätzliche Mikrolinsen-Effekte einzelner Sterne in der vorderen Galaxie verstärkt wird.

Zur Originalseite