Die Hand eines Pulsars

Unter einem ovalen Gebilde mit roten Lichtern am Rand hebt sich ein blauer Nebel, der an eine Hand erinnert.

Credit: P. Slane (Harvard-Smithsonian CfA) et al., CXC, NASA

Beschreibung: Verglichen mit anderen Pulsaren ist PSR B1509-58 jung. Das Licht der Supernovaexplosion, bei der er entstand, hat die Erde vor etwa 1700 Jahren erreicht. Der Neutronenstern mit einem Durchmesser von 20 Kilometern rotiert 7 Mal pro Sekunde. Er ist ein kosmischer Dynamo, der einen Strom geladener Teilchen erzeugt. Der energiereiche Wind sorgt für das Leuchten im Röntgenlicht, das den Nebel auf diesem tiefgründigen Bild des Röntgenteleskops Chandra umgibt.

Röntgenstrahlen mit niedriger Energie werden rot dargestellt, solche mit mittlerer Wellenlänge grün und Strahlung mit hoher Energie leuchtet blau. Der Pulsar befindet sich in der hellen Zentralregion. Die komplexe Struktur ähnelt einer Hand. PSR B1509-58 ist etwa 17.000 Lichtjahre entfernt im südlichen Sternbild Zirkel (Circinus). In dieser Entfernung ist das Chandrabild 100 Lichtjahre breit.

Zur Originalseite

Fermi katalogisiert den Gammastrahlen-Himmel

Dargestellt ist eine Grafik des ganzen Himmels als blaues Oval, die aus Daten des Teleskops Fermi erstellt wurde. Durch die Mitte verläuft ein hellblauer Streifen, das ist die Milchstraße.

Credit: NASA, DOE, Internationale Fermi-LAT-Arbeitsgruppe

Was leuchtet am Himmel in Gammastrahlen? Das Gammastrahlen-Weltraumteleskop Fermi bietet die bisher vollständigste Antwort auf diese Frage. Es erstellte einen ersten Himmelskatalog. Fermis Quellen kosmischer Gammastrahlen zeigen die energiereichsten Teilchenbeschleuniger der Natur. Sie liefern Photonen mit 100 MeV bis 100 GeV. Das ist mehr als das 50-Millionenfache bis 50-Milliardenfache der Energie von sichtbarem Licht.

Elf Monate lang durchmusterte Fermi den Himmel mit seinem Large Area Telescope (LAT). Aus den Daten wurden 1451 Quellen katalogisiert. Zu diesen Quellen gehören energiereiche Galaxien mit intensiver Sternbildung. Auch aktive galaktische Kerne (AGN) außerhalb der Michstraße zählen dazu. Auch in unserer Milchstraße befinden sich viele Pulsare (PSR) und Pulsarwindnebel (PWN). Außerdem gibt es Supernovaüberreste (SNR), Röntgen-Doppelsterne (HXB) und Mikroquasare (MQO).

In der Mitte verläuft die Milchstraße durch Fermis Himmelskarte. Die diffuse Gammastrahlung in der galaktischen Ebene verläuft waagrecht durch das Bild. Wenn ihr den Mauspfeil über die Karte schiebt, werden die katalogisierten Gammastrahlenquellen markiert. 630 katalogisierte Quellen von Gammastrahlen sind noch unbekannt. Sie können also nicht mit beobachteten Quellen im niedrigeren Energiebereich in Verbindung gebracht werden.

Zur Originalseite

Fermis Gammastrahlen-Pulsare

Der ganze Himmel ist dunkelblau oval dargestellt, waagrecht verläuft ein rotes Band. Über das Bild sind einzelne Strahlungsquellen verteilt.

NASA, DOE, Fermi-LAT-Arbeitsgemeinschaft

Pulsare entstehen in Supernovae. Sie sind rotierende Neutronensterne. Das sind kollabierte Kerne von Sternen. Diese kollabierten Kerne bleiben bei finalen Explosionen massereicher Sterne übrig.

Pulsare werden meist entdeckt, indem man ihre regelmäßigen Radiopulse entdeckt und erforscht. Nun wurden zwei Dutzend Pulsare vom Weltraumteleskop Fermi in der Energie extremer Gammastrahlen entdeckt. 16 Pulsare fand man nur durch ihre gepulsten Emissionen in Gammastrahlen.

Diese Karte zeigt den ganzen Himmel in Gammastrahlen. In der Mitte verläuft die Ebene unserer Milchstraße. Die Positionen von Pulsaren sind markiert. Die 16 neuen Fermi-Pulsare sind gelb eingekreist. 8 Radiopulsare waren schon zuvor bekannt. Sie sind mit rosaroten Kreisen markiert.

Die hellsten bizarren Sternenreste am Gammastrahlenhimmel sind der Vela-Pulsar, der Krebs-Pulsar und der Geminga-Pulsar auf der rechten Seite. Die Pulsare Taz, Eel und Rabbit wurden nach den Nebeln benannt, die sie mit Energie versorgen. Auch die Pulsare Gamma Cygni und CTA 1 links gehören zu den expandierenden Supernovaüberresten gleichen Namens.

Zur Originalseite

Ferimis erstes Bild

Siehe Erklärung. Durch ein leuchtendblaues ovales Bild des ganzen Himmels verläuft waagrecht ein rotes Band, das die Milchstraße darstellt.

Credit: NASA, DOE, das internationale LAT-Team

Beschreibung: Das Gamma-ray Large Aera Space Telescope (GLAST), das am 11. Juni gestartet wurde um das Universum in extremen Energiebereichen zu erforschen, wurde nun offiziell in Fermi Gamma-ray Space Telescope umbenannt, zu Ehren des Nobelpreisträgers Enrico Fermi (1901-1954), Pionier der Hochenergiephysik. Nach der Testphase senden nun die beiden Instrumente Fermis, der Gamma-ray Burst Monitor (GBM) und das Large Area Telescope (LAT), regelmäßig Daten.

Dieses Falschfarbenbild zeigt Fermis erste Karte des Gammastrahlen-Himmels von LAT. Es zeigt den ganzen Himmel, das Zentrum unserer Milchstraße und die galaktische Ebene wurden über die Bildmitte projiziert.

Was leuchtet am Gammastrahlenhimmel? In der galaktischen Ebene kollidiert energiereiche kosmische Strahlung mit Gas und Staub und erzeugt das diffuse Gammastrahlen-Leuchten. Starke Emissionen von rotierenden Neutronensternen oder Pulsaren und weit entfernten aktiven Galaxien, bekannt als blazars, sind zu erkennen, wenn Sie den Mauspfeil über die Karte schieben.

Als Vorspiel für künftige Entdeckungen kombiniert dieses bemerkenswerte Ergebnis die Beobachtungen von nur 4 Tagen, was einem Jahr an Beobachtungen mit dem Compton-Gammastrahlenteleskop in den 1990er-Jahren entspricht. Zusätzlich zur Möglichkeit Gammastrahlenblitze zu beobachten erlaubt die stark verbesserte Empfindlichkeit Fermi tiefer in das Hochenergie-Universum hinauszublicken.

Zur Originalseite

M1: Der Krebsnebel von Hubble

Das explodierte Staubgewirr ist der berühmte Krebsnebel im Stier, der 1. Eintrag auf Messiers Liste (M1).

Bildcredit: NASA, ESA, J. Hester, A. Loll (ASU); Dank an: Davide De Martin

Beschreibung: Dieses Durcheinander bleibt übrig, wenn ein Stern explodiert. Der Krebsnebel ist das Ergebnis einer Supernova, die 1054 n. Chr. zu sehen war, er ist mit rätselhaften Fasern gefüllt. Diese Filamente sind nicht nur ungeheuer komplex, sondern besitzen anscheinend auch weniger Masse, als von der ursprünglichen Supernova ausgeworfen wurde, sowie eine höhere Geschwindigkeit, als man von einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen und in drei wissenschaftlich zugeordneten Farben dargestellt. Der Krebsnebel ist 10 Lichtjahre groß. Im Zentrum des Nebels liegt ein Pulsar – ein Neutronenstern mit der Masse der Sonne, aber nur so groß wie eine kleine Stadt. Der Krebs-Pulsar rotiert etwa 30 Mal in der Sekunde.

Zur Originalseite