Supernovakanone stößt den Pulsar J0002 aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Canadian Galactic Plane Survey (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Beschreibung: Was kann einen Neutronenstern wie eine Kanonenkugel ausstoßen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebelartigen Überrest CTB 1 erzeugte, einen massereichen Stern, doch zusätzlich schoss sie den neu entstandenen Kern eines Neutronensterns – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7-mal pro Sekunde um seine Achse. Er wurde mithilfe der Software Einstein@Home entdeckt, die  Daten des Gammastrahlen-Weltraumteleskops Fermi der NASA durchsucht. Der Pulsar PSR J0002+6216 (kurz J0002) rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde dahin. Er hat den Supernovaüberrest CTB 1 bereits verlassen und ist schnell genug, um aus unserer Galaxis hinauszukommen. Die hier abgebildete Spur des Pulsars entspringt – wie man sieht – links unter dem Supernovaüberrest.

Dieses Bild ist eine Kombination aus Radiobildern des VLA– und des DRAO-Radioobservatoriums sowie Daten, die mit dem Infrarotobservatorium IRAS der NASA gewonnen wurden. Es ist bekannt, dass Supernovae sich wie Geschütze und Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das anstellen.

Zur Originalseite

Elemente des Nachleuchtens

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC/SAO

Beschreibung: Massereiche Sterne verbrennen im Laufe ihres kurzen Lebens rasend schnell Kernbrennstoff. Durch Fusion werden bei extremen Temperaturen und Dichten um den Sternkern herum die Kerne leichter Elementen wie Wasserstoff und Helium zu schwereren Elementen wie Kohlenstoff, Sauerstoff etc. kombiniert – in einer Reihe, die mit Eisen endet. Daher schleudert eine Supernovaexplosion – das unvermeidliche und spektakuläre Ende eines massereichen Sterns – Überreste in den Weltraum zurück, die mit schwereren Elementen angereichert sind, welche später in andere Sterne und Planeten (und Menschen!) eingebaut werden.

Dieses detailreiche Falschfarben-Röntgenbild des Chandra-Observatoriums im Orbit zeigt so eine heiße, expandierende stellare Trümmerwolke, die etwa 36 Lichtjahre groß ist. Dieser junge Supernovaüberrest ist als G292.0+1.8 katalogisiert und liegt im südlichen Sternbild Zentaur. Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde vor ungefähr 1600 Jahren.

Bläuliche Farben zeigen viele Millionen Grad heiße Gasfasern, die besonders viel Sauerstoff, Neon und Magnesium enthalten. Ein punktförmiges Objekt links unter der Mitte auf diesem Chandrabild lässt vermuten, dass im Nachleuchten der anreichernden Supernova auch ein Pulsar entstand – ein rotierender Neutronenstern, Überrest des kollabierten Sternkerns.

Das faszinierende Bild wurde zur 20-Jahresfeier des Röntgenobservatoriums Chandra veröffentlicht.

Zur Originalseite

NICER bei Nacht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, NICER

Beschreibung: Der Neutron Star Interior Composition Explorer (NICER), eine Nutzlast an Bord der Internationalen Raumstation, dreht und wendet sich, um kosmische Röntgenquellen zu verfolgen, während die Station alle 93 Minuten den Planeten Erde umkreist. Auf der Nachtseite der Bahn bleiben die Röntgendetektoren eingeschaltet. Während NICER also von Ziel zu Ziel schwenkt, werden die hellen Bögen und Schleifen dieser Ganzhimmelskarte gezogen, die aus NICER-Daten von 22 Monaten erstellt wurde.

Die Bögen laufen tendenziell an markanten hellen Stellen zusammen – es sind Pulsare am Röntgenhimmel, die NICER regelmäßig erfasst und überwacht. Pulsare sind rotierende Neutronensterne, die getaktete Röntgenpulse abgeben. Ihr Takt ist so präzise, dass sie zur Navigation verwendet werden – zur Bestimmung von Geschwindigkeit und Position von Raumfahrzeugen. Die Koordinaten dieser NICER-Röntgenkarte des ganzen Himmels sind so gewählt, dass der Himmelsäquator waagrecht in der Mitte verläuft.

Zur Originalseite

Mosaik des Vela-Supernovaüberrestes

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Robert Gendler, Roberto Colombari, Digitized Sky Survey (POSS II)

Beschreibung: Die Ebene unserer Milchstraße läuft durch diese komplexe, schöne Himmelslandschaft. Das 16 Grad breite Mosaik aus 200 Bildern zeigt die farbenprächtigen Sterne am nordwestlichen Rand des Sternbildes Segel (Vela). In der Bildmitte liegen die leuchtenden Fasern des Vela-Supernovaüberrestes, einer expandierenden Trümmerwolke von der Todesexplosion eines massereichen Sterns.

Das Licht der Supernovaexplosion, die den Vela-Überrest erzeugte, erreichte die Erde vor etwa 11.000 Jahren. Die kosmische Katastrophe hinterließ neben den komprimierten Fasern aus leuchtendem Gas auch einen unglaublich dichten, rotierenden Sternkern, den Vela-Pulsar. Der Vela-Überrest ist etwa 800 Lichtjahre entfernt und eingebettet in einen wahrscheinlich größeren, älteren Supernovaüberrest, den Gum-Nebel. Zu den erkennbaren Objekten auf diesem breiten Mosaik zählen Emissions- und Reflexionsnebel, Sternhaufen sowie der markante Bleistiftnebel.

Zur Originalseite

Ferimis First Light

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit: NASA, DOE, das internationale LAT-Team

Beschreibung: Das Gamma-ray Large Aera Space Telescope (GLAST), das am 11. Juni gestartet wurde um das Universum in extremen Energiebereichen zu erforschen, wurde nun offiziell in Fermi Gamma-ray Space Telescope umbenannt, zu Ehren des Nobelpreisträgers Enrico Fermi (1901-1954), Pionier der Hochenergiephysik. Nach der Testphase senden nun die beiden Instrumente Fermis, der Gamma-ray Burst Monitor (GBM) und das Large Area Telescope (LAT), regelmäßig Daten.

Dieses Falschfarbenbild zeigt Fermis erste Karte des Gammastrahlen-Himmels von LAT. Es zeigt den ganzen Himmel, das Zentrum unserer Milchstraße und die galaktische Ebene wurden über die Bildmitte projiziert.

Was leuchtet am Gammastrahlenhimmel? In der galaktischen Ebene kollidiert energiereiche kosmische Strahlung mit Gas und Staub und erzeugt das diffuse Gammastrahlen-Leuchten. Starke Emissionen von rotierenden Neutronensternen oder Pulsaren und weit entfernten aktiven Galaxien, bekannt als blazars, sind zu erkennen, wenn Sie den Mauspfeil über die Karte schieben.

Als Vorspiel für künftige Entdeckungen kombiniert dieses bemerkenswerte Ergebnis die Beobachtungen von nur 4 Tagen, was einem Jahr an Beobachtungen mit dem Compton-Gammastrahlenteleskop in den 1990er-Jahren entspricht. Zusätzlich zur Möglichkeit Gammastrahlenblitze zu beobachten erlaubt die stark verbesserte Empfindlichkeit Fermi tiefer in das Hochenergie-Universum hinauszublicken.

Zur Originalseite