Die galaktische Ebene: Radio kontra Licht

Bildcredit und Bildrechte: Radio: S. Mantovanini und the GLEAM team; Licht: Axel Mellinger (milkywaysky.com)

Wie sieht die Milchstraße in Radiowellen aus? Um das herauszufinden, bildete GLEAM (GaLactic and Extragalactic All-sky MWA) das zentrale Band unserer Galaxis mit hoher Auflösung in Radiolicht auf. Dazu wurde das Murchison Widefield Array (MWA) in Australien eingesetzt. Im Video sehen wir dieses Radiolicht auf der linken Seite.

Rechts ist das sichtbare Licht aus der gleichen Gegend am Himmel. Die Unterschiede sind so groß, weil die meisten Objekte im Radiolicht ganz anders leuchten als im sichtbaren Licht. Außerdem wird das sichtbare Licht vom interstellaren Staub in unserer Nähe blockiert.

Besonders deutlich werden diese Unterschiede in Richtung des Zentrums unserer Galaxis. Das sehen wir nach etwa einem Drittel des Videos. Wir erkennen ganz verschiedene bunte Strukturen im Radiolicht. Die hellen, roten Flecken sind Supernova-Überreste von explodierten Sternen. Die blauen Bereiche dagegen sind Sternschmieden. Sie sind voll von jungen, hellen Sternen.

Zur Originalseite

Straße zum galaktischen Zentrum

Das Kompositbild zeigt im Vordergrund das Monument Valley in Utah in den USA. Im Hintergrund ist die Ebene der Milchstraße mit dem Zentrum der Galaxis.

Bildcredit und Bildrechte: Michael Abramyan

Geht der Weg zum Zentrum der Galaxis durch das amerikanische Monument Valley? Das muss nicht so sein. Sollte aber der Weg dort entlang führen: macht ein Foto! In diesem Fall ist es die US-Bundesstraße U.S. Highway 163. Ikonische Hügel im Reservat der Navajo (Navajo Nation Reservation) säumen den Horizont. Das Band der Milchstraße reicht vom Himmel herab. Es wirkt wie eine Verlängerung der Straße auf der Erde.

Staubwolken bilden dunkle Filamente in der Milchstraße und somit einen Kontrast zu den Milliarden heller Sternen und bunt leuchtender Gaswolken. Dazu gehören der Lagunennebel und der Trifidnebel.

Dieses Bild ist ein Komposit mehrerer Aufnahmen mit derselben Kamera am selben Ort: dem Forest Gump Point im US-Bundesstaat Utah. Der Vordergrund wurde kurz nach Sonnenuntergang aufgenommen. Es war Anfang September 2021 zur „blauen Stunde„. Der Hintergrund ist ein Mosaik aus vier Aufnahmen. Sie entstanden einige Stunden später.

Zur Originalseite

Mondfinsternis mit Doppelhelix

Weitwinkelbild des Nachthimmels über einem Radioteleskop in der unteren, linken Bildecke. A, Himmel schlängelt sich die Milchstraße von links oben nach rechts unten. Von rechts unten nach links oben schlängelt sich deutlich lichtschwächer das Zodiakallichts. Am oberen Bildrand steht der verfinsterte Mond als orange Scheibe im Zodiakallicht.

Bildcredit und Bildrechte: Chunlin Liu

Dieses Bild entstand zu einem bestimmten Zeitpunkt, damit es eine totale Mondfinsternis zeigt. Zusätzlich enthielt es eine echte Überraschung.

Zunächst zur Finsternis: Der Mond befindet sich vollständig im Schatten der Erde. Er ist als orangefarbene Scheibe nahe dem oberen Bildrand zu sehen. Ihre orange Farbe entsteht durch den kleinen Anteil roten Lichts, das die irdische Atmosphäre streut. Dabei entstehen Farben wie beim Sonnenuntergang.

Nun die Überraschung: Einer der scheinbaren Stränge der Doppelhelix ist die Milchstraße. Das ist die zentrale Scheibe unserer Heimatgalaxie. Das zweite Band ist Zodiakallicht. Das ist Sonnenlicht, das von Staub in unserem Sonnensystem gestreut wird. Sie schneiden sich, weil sie sich in zwei zueinander geneigten Ebenen befinden. In der einen Ebene wandert der Staub um unsere Sonne. In der anderen Ebene umrunden die Sterne unsere Galaxie. Dieser gut bekannte Winkel zeigt sich in diesem Bild sehr deutlich.

Das Weitwinkelbild in der Mercator-Projektion reicht von einem Horizont bis zum anderen. Es wurde Anfang September beim Mingantu-Observatorium aufgenommen, das in der Inneren Mongolei in China steht.

Zur Originalseite

SWAN, Schwan, Adler

Vor den dichten Sternwolken der zentralen Milchstraße posiert der Komet C/2025 R2 (SWAN). Die roten Nebel im Bild sind der Adlernebel und der Schwanennebel. Sie sind auch als M16 und M17 bekannt.

Bildcredit und Bildrechte: Adam Block

Komet C/2025 R2 (SWAN) zeigt eine grünliche Koma und einen schwachen Schweif. Diese Teleskopaufnahme vom 17. Oktober ist 7 Grad breit. Darauf steht der Komet vor einer Ansammlung von Sternen und staubigen interstellaren Wolken.

An diesem Tag posierte der neue Besucher im inneren Sonnensystem mit zwei anderen „Himmelsvögeln“ vor dem Zentrum unserer Milchstraße. Messier 16 am unteren Bildrand und Messier 17 sind auch als Adlernebel bzw. Schwanennebel bekannt.

Das grünliche Leuchten der Koma des Kometen entsteht, wenn zweiatomiges Kohlenstoffgas im Sonnenlicht fluoresziert. Die rötlichen Farbtöne in den Nebeln stammen von ionisiertem Wasserstoff. Sie zeigen Gebiete mit Sternentstehung, diese sind etwa 5000 Lichtjahre entfernt.

Komet SWAN zieht nun wieder aus dem inneren Sonnensystem hinaus. Er bleibt aber weiterhin ein gutes Ziel für Ferngläser und kleine Teleskope. In den frühen Abendstunden kann man ihn am Nordhimmel nahe am südlichen Horizont beobachten. C/2025 R2 (SWAN) kam unserem schönen Planeten am 20. Oktober am nächsten. Er war damals nur 2,2 Lichtminuten entfernt.

Zur Originalseite

Perseiden-Meteore von Durdle Door

Über der Durdle Door an der englischen Küste bei Dorset steigt die Milchstraße steil über dem Meer auf. Vom Himmel fallen Meteore der Perseïden vom Himmel.

Bildcredit und Bildrechte: Josh Dury

Was sind diese hellen Bögen am Himmel? Das sind Meteore. Genauer gesagt, es sind Sternschnuppen vom Perseïden-Meteorschauer in diesem Jahr. In den letzten Wochen wurden viele einzelne Fotos dieser Perseïden-Meteore nach Einbruch der Dunkelheit aufgenommen. Diese Bilder wurden später zu einem Gesamtbild kombiniert.

Obwohl sich die Meteore auf geraden Linien über den Himmel bewegen, wirken ihre Spuren auf dem Foto gebogen. Das liegt am Weitwinkelobjektiv der Kamera, das die Perspektive verzerrt. Alle Lichtspuren zeigen auf einen gemeinsamen Punkt am Himmel. Das ist der sogenannte Radiant. Er liegt im Sternbild Perseus und befindet sich über dem oberen Rand des Bildes.

Dieselbe Kamera machte außerdem ein lang belichtetes Foto des Nachthimmels. Darauf sieht man das helle Band der Milchstraße, das fast senkrecht durch die Bildmitte verläuft. Im Vordergrund steht der bekannte Kalksteinbogen „Durdle Door“ an der Küste von Dorset in England. Der Name stammt vermutlich aus einer Zeit vor über tausend Jahren.

Zur Originalseite

Perseiden aus dem Perseus

Über einer Wiese mit Hügeln am Horizont strahlt ein Sternhimmel. Das Band unserer Milchstraße zieht sich in einem Bogen nach rechts. Von einer Stelle der Milchstraße knapp über dem Horizont strömen viele Lichtspuren aus.

Bildcredit und Bildrechte: Marcin Rosadziński

Woher kommen all diese Meteore? In Bezug auf die Richtung am Himmel lautet die präzise Antwort: aus dem Sternbild Perseus. Deshalb nennt man den Meteorschauer, der heute Nacht seinen Höhepunkt erreicht, auch Perseïden. Die Meteore strömen scheinbar alle aus einem Punkt im Perseus, dem sogenannten Radianten.

Doch was ihren Ursprung betrifft, stammt der sandkorngroße Staub, aus dem die Perseïden entstehen, vom Kometen Swift-Tuttle. Dieser Komet folgt einer genau definierten Umlaufbahn um unsere Sonne. Der Teil dieser Bahn, der der Erde am nächsten kommt, liegt vor dem Sternbild Perseus. Daher liegt der Radiant der herabfallenden Teilchen im Perseus, wenn die Erde diese Umlaufbahn kreuzt.

Dieses Bild ist eine Komposition mit über 100 Meteoren. Sie wurden in sechs Nächten beim Perseïden-Schauer im August 2018 aufgenommen. Am Himmel über den Bieszczady-Bergen in Polen leuchteten viele helle Meteore. Die Perseïden sind üblicherweise einer der besten Meteorschauer des Jahres. Heuer konkurrieren sie mit dem hellen Mond, der an vielen Orten kurz nach Sonnenuntergang aufgeht.

Zur Originalseite

Meteor explodiert in der Milchstraße

Drei Bilder wurden animiert, um diesen explodierenden Meteor neben der Milchstraße zu zeigen, die rechts senkrecht aufsteigt. Der Meteor stieß rot leuchtende Nebelwolken aus, die sich ausbreiten.

Bildcredit und Bildrechte: Andre van der Hoeven

In etwa einer Woche erreicht der Sternschnuppenstrom der Perseïden sein Maximum. Körnchen von vereistem Fels streifen dann über den Himmel. Wir sehen sie, weil sie beim Eintritt in die Erdatmosphäre verdampfen. Diese Körnchen wurden von dem Kometen Swift-Tuttle verstreut. Die Perseïden entstehen, indem die Erde jedes Jahr die Umlaufbahn des Kometen Swift-Tuttle durchkreuzt. Sie sind in den meisten Jahren einer der ergiebigsten Sternschnuppenströme.

Zwar lässt sich das Ausmaß der Aktivität von Meteorströmen schwer vorhersagen. Doch bei einem klaren dunklen Himmel können Beobachter bis zu einer Sternschnuppe pro Minute sehen. Allerdings liegt das Maximum der Perseïdenaktivität dieses Jahr nur wenige Tage nach dem Vollmond. Schwache Meteore gehen daher leider im Glanz des Mondes und in der Himmelshelligkeit verloren, die damit einhergeht. Meteorschauer kann man allgemein in abgelegenen Gegenden am besten beobachten, die sich fern von jeglichen Lichtern befindet.

Der Meteor wurde bei den Perseïden 2015 über Österreich eingefangen. Die Bildfolge zeigt, wie er nahe beim zentralen Band der Milchstraße explodierte. Das milchige Band ist die Projektion unserer Heimatgalaxie.

Zur Originalseite

Glühwürmchen, Meteore und Milchstraße

Hinten steigt die Milchstraße steil auf. Sie ist von markanten Dunkelwolken geteilt. Über den Himmel zischen Meteore, vor dem dunklen Horizont zischen viele grüne Glühwürmchen.

Bildcredit und Bildrechte: Daniel Korona

Diese surreale Ansicht zeigt eine Sommernacht auf der Nordhalbkugel der Erde. Die helle Milchstraße steigt vom Horizont im Nationalpark Sierra de Órganos in Zentralmexiko auf. Im Vordergrund blitzen unzählige Glühwürmchen auf. Die hellen Streifen, die auf die linke obere Bildecke weisen, sind Sternschnuppen der Delta-Aquariiden.

Der derzeit aktive Meteorstrom der Delta-Aquariiden teilt sich jedes Jahr die Augustnächte mit dem bekannteren Perseïden-Meteorstrom. Dieses Jahr machen die Sternschnuppen machen den nach Mitternacht überwiegend mondlosen Himmel Anfang August sehr beliebt bei nächtlichen Himmelsbeobachter*innen.

Wie kann man eine Delta-Aquaride von einer Perseïde unterscheiden? Die Streifen der Perseïden-Meteore lassen sich zu einem scheinbaren Ausstrahlungspunkt im Sternbild Perseus zurückverfolgen. Delta-Aquariiden hingegen scheinen aus dem südlicheren Sternbild Wassermann zu kommen, links oben außerhalb des Bildausschnitts.

Natürlich sind in diesen nördlichen Sommernächten auch die biolumineszierenden Blitze von Glühwürmchen häufig zu sehen. Aber wie kann man ein Glühwürmchen von einer Sternschnuppe unterscheiden? Versucht einfach, eins zu fangen.

Das Bild besteht aus einer Reihe von Einzelaufnahmen, die am 29. und 30. Juli aufgenommen und anschließend überlagert wurden.

Zur Originalseite