MESSENGERs letzter Tag auf Merkur

Wir blicken schräg auf einen rechteckigen Ausschnitt der Merkur-Oberfläche. Sie ist rot und blau farbcodiert und zeigt einige Krater. Rote Teile im Bild sind höher als blaue.

Bildcredit: NASA, Johns Hopkins Univ. APL, Staatliche Universität Arizona, CIW

MESSENGER war die erste Raumsonde, die um den innersten Planeten Merkur kreiste. Sie wurde am 30. April 2015 in der oben gezeigten Region auf Merkurs Oberfläche abgesetzt. Die Projektion entstand aus MESSENGER-Bildern und Laser-Höhenmessungen. Der Blick reicht nach Norden über den nordöstlichen Rand des breiten Shakespeare-Beckens, das mit Lava gefüllt ist.

In der linken oberen Ecke liegt der große, 48 km breite Krater Janacek. Die Höhe der Landschaft ist farbcodiert. Rote Bereiche liegen etwa 3 km über den blauen. MESSENGERs letzter Umlauf sollte etwa in der Mitte enden. Dabei sollte die Raumsonde mit fast 4 km/s auf der Oberfläche einschlagen und dabei einen neuen, etwa 16 m großen Krater erzeugen.

Der Einschlag fand auf Merkurs Rückseite statt und wurde nicht mit Teleskopen beobachtet. Er wurde aber indirekt bestätigt. Denn als die Raumsonde hinter dem Planeten auftauchen sollte, wurde kein Signal mehr gemessen. Die Raumsonde MErcury Surface, Space ENvironment, GEochemisty and Ranging startete 2004. Sie erreichte 2011 den innersten Planeten im Sonnensystem und machte mehr als 4000 Umläufe.

Zur Originalseite

Ein Blick zu M106

Im Bild sind mehrere Galaxien verteilt, links oben ist die größte, sie ist schräg von der Seite zu sehen und wirkt etwas unregelmäßig.

Bildcredit und Bildrechte: Kyunghoon Lim

Die helle, schöne Spirale Messier 106 prägt diese kosmische Aussicht. Das fast zwei Grad breite Sichtfeld des Teleskops blickt zum gut erzogenen Sternbild Jagdhunde (Canes Venatici) in der Nähe der Deichsel des Großen Wagens.

M106 ist auch als NGC 4258 bekannt. Sie ist etwa 80.000 Lichtjahre groß, 3,5 Millionen Lichtjahre entfernt und das größte Mitglied der Canes II-Galaxiengruppe. Für eine weit entfernte Galaxie ist die Entfernung zu M106 sehr gut bekannt, weil sie direkt gemessen werden konnte. Dazu wurden die Maser-Emissionen der Galaxie analysiert.

Maser steht für Mikrowellen-Laseremission. Maser sind sehr seltene, aber natürlich auftretende Emissionen. Sie entstehen durch Wassermoleküle in Molekülwolken, die um ihren aktiven galaktischen Kern kreisen.

Eine weitere markante Spiralgalaxie in der Szene ist NGC 4217, die wir fast von der Kante sehen. Sie befindet sich rechts unter M106. Die Entfernung zu NGC 4217 ist viel weniger gut bekannt, sie wird auf etwa 60 Millionen Lichtjahre geschätzt. Die hellen, gezackten Sterne liegen im Vordergrund in unserer Milchstraße.

Zur Originalseite

Der verlorene Stern Eta Carinae

Der Homunkulusnebel besteht aus zwei Keulen, die in der Bildmitte hell leuchten. Rechts sind die Keulen von einem roten Nebel umgeben.

Bildcredit und Bildrechte: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Der Stern Eta Carinae explodiert vielleicht bald. Aber niemand weiß, wann – vielleicht nächstes Jahr, vielleicht aber auch in einer Million Jahren. Eta Carinae besitzt etwa 100 Sonnenmassen. Das macht ihn zu einem erstklassigen Kandidaten für eine gewaltige Supernova. Historische Aufzeichnungen berichten, dass Eta Carinae vor etwa 170 Jahren einen ungewöhnlichen Ausbruch erlebte, der ihn zu einem der hellsten Sterne am Südhimmel machte. Eta Carinae im Schlüssellochnebel ist der einzige Stern, bei dem derzeit vermutet wird, dass er natürliches LASER-Licht abstrahlt.

Dieses Bild zeigt Details in dem ungewöhnlichen Nebel, der diesen wilden Stern umgibt. Die hellen, vielfarbigen Streifen, die von Eta Carinaes Zentrum ausgehen, sind vom Teleskop verursachte Beugungsspitzen. Die beiden getrennten Keulen des Homunkulusnebels umschließen die heiße Zentralregion. Rechts im Bild befinden sich einige seltsame radiale rote Streifen. Die Keulen sind von Schlieren aus Gas und Staub durchzogen, die das blaue und ultraviolette Licht absorbieren, das nahe dem Zentrum abgestrahlt wird. Die Streifen sind jedoch nicht erklärbar.

Zur Originalseite

Ma’az, das SuperCam-Ziel

Die 6 Zentimeter große Zielregion Ma'az des SuperCam-Lasers des Rovers Perseverance.

Bildcredit: NASA/JPL-Caltech/LANL/CNES/CNRS

Beschreibung: Wie klingt das Klatschen eines Lasers? Ihr braucht dazu keinen Zen-Meister befragen. Lauscht einfach den ersten akustischen Aufnahmen von Laser-Impulsen auf dem Mars.

An Sol 12 (2. März) der Mission Perseverance beschoss das Instrument SuperCam auf dem Mast des Rovers einen Felsen mit der Bezeichnung Ma’az, und zwar 30-mal aus einer Entfernung von ungefähr 3,1 Metern. Das Mikrofon erfasste die leisen Stakkato-Knallgeräusche der schnellen Serie an Laserimpulsen der SuperCam.

Die Stoßwellen, die in der dünnen Marsatmosphäre entstehen, wenn Gesteinsteilchen durch die Laserimpulse verdampfen, verursachen die Knallgeräusche. Diese wiederum liefern Hinweise auf die physikalische Struktur des Zielobjekts.

Diese Nahaufnahme der SuperCam der Zielregion Ma’az ist 6 Zentimeter groß. Ma’az bedeutet in der Sprache der Navajo Mars.


Zur Originalseite

Mit Laserstrahlen den Himmel zähmen

Die Teleskope am Paranal-Observatorium der ESO sind mit Lasern ausgerüstet, um die Turbulenzen der Atmosphäre zu neutralisieren.

Bildcredit und Bildrechte: Juan Carlos Munoz; Text: Juan Carlos Munoz

Beschreibung: Warum funkeln Sterne? Das liegt an unserer Atmosphäre. Lufttaschen mit geringfügig anderer Temperatur, die sich ständig bewegen, verzerren die Lichtpfade ferner astronomischer Objekte. Turbulenzen in der Atmosphäre sind in der Astronomie der Grund dafür, dass Bilder von Quellen, die man erforschen möchte, verschwommen abgebildet werden.

Dieses Teleskop am Paranal-Observatorium der ESO ist mit vier Lasern ausgerüstet, um diese Turbulenzen zu neutralisieren. Die Laser sind so eingestellt, dass sie Natriumatome hoch oben in der Erdatmosphäre anregen. Das Natrium gelangte durch vorbeiziehende Meteore dorthin. Diese leuchtenden Natriumflecken verhalten sich wie künstliche Sterne, deren Funkeln unmittelbar aufgezeichnet und an einen flexiblen Spiegel weitergeleitet wird. Dieser verformt sich Hunderte Male pro Sekunde. So werden die Turbulenzen der Atmosphäre ausgeglichen, was zu knackig scharfen Bildern führt.

Das Entfunkeln von Sternen ist ein wachsendes Technologiefeld und liefert in manchen Fällen Bilder mit HubbleQualität vom Boden aus. Diese Technik führte auch zu Weiterentwicklungen in der Augenheilkunde, wo sie verwendet wird, um sehr scharfe Bilder der Netzhaut zu erhalten.

Zur Originalseite

Blick auf M106

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Phil Keyser

Beschreibung: Die große, schöne und helle Spirale Messier 106 dominiert diese kosmische Aussicht. Das fast zwei Grad breite Teleskopsichtfeld blickt zum gut abgerichteten Sternbild Jagdhunde (Canes Venatici) nahe der Deichsel des Großen Wagens. M106 ist auch als NGC 4258 bekannt. Sie ist etwa 80.000 Lichtjahre groß und somit das größte Mitglied der Galaxiengruppe Canes II.

Ihre Entfernung beträgt 23,5 Millionen Lichtjahre. Für eine weit entfernte Galaxie ist die Entfernung zu M106 sehr gut bekannt, da sie direkt gemessen werden kann, indem man den außergewöhnlichen Maser – eine Mikrowellen-Laser-Strahlung – beobachtet. Die Maser-Emission ist sehr selten, aber natürlichen Ursprungs. Sie entsteht durch Wassermoleküle in Molekülwolken, die um ihren aktiven galaktischen Kern kreisen.

Eine andere markante Spiralgalaxie in der Szene ist fast von der Seite sichtbar, nämlich NGC 4217 rechts unter M106. Die Entfernung zu NGC 4217 ist viel weniger bekannt, sie wird auf etwa 60 Millionen Lichtjahre geschätzt.

Zur Originalseite

Laserangriff auf das galaktische Zentrum

Aus einer geöffneten Teleskopkuppel schießt ein Laserstrahl ins Zentrum der Galaxis. Links oben wölbt sich die Milchstraße.

Bildcredit: Yuri Beletsky (Carnegie Las Campanas Observatory, TWAN), ESO

Warum schießen Leute mit einem mächtigen Laser aufs Zentrum der Galaxis? Zum Glück ist das kein Erstschlag in einem galaktischen Krieg. Vielmehr versuchen Forschende am Very Large Telescope (VLT) in Chile, die Verzerrung der veränderlichen Erdatmosphäre zu messen.

In großer Höhe werden Atome mit Laser angeregt. Dadurch erscheinen sie wie ein künstlicher Stern. Regelmäßige Aufnahmen solcher künstlichen Sterne helfen Forschenden, die Unruhe der Atmosphäre sofort zu messen. Diese Information wird in einen VLT-Teleskopspiegel eingespeist. Der Spiegel wird dann leicht deformiert. So wird die Unschärfe minimiert. Hier beobachtete eine VLT-Einheit das Zentrum unserer Galaxis, daher wurde die Luftunruhe der Erdatmosphäre in diese Richtung gemessen.

Was einen intergalaktischen Krieg betrifft, sind im Zentrum unserer Galaxis keine Verluste zu erwarten. Das Licht dieses mächtigen Lasers wäre in Kombination mit dem Licht unserer Sonne nämlich höchstens so hell wie ein blasser, weit entfernter Stern.

APOD ist in den Weltsprachen Arabisch, Bulgarisch, Chinesisch (Peking), Chinesisch (Taiwan), Deutsch, Englisch (GB), Französisch (Frankreich), Hebräisch, Indonesisch, Japanisch, Katalanisch, Kroatisch, Montenegrinisch, Niederländisch, Polnisch, Portugiesisch (Brasilien), Russisch, Serbisch, Slowenisch, Spanisch, Syrisch, Taiwanesisch, Tschechisch, Türkisch, Türkisch und Ukrainisch verfügbar.

Zur Originalseite

Angriff der Laserleitsterne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: Europäische Südsternwarte / Gerhard Hudepohl (atacamaphoto.com)

Beschreibung: Als sie diese atemberaubende Luftaufnahme fotografierte, musste eine Drohne mächtigen Laserstrahlen ausweichen. Die Begegnung fand über den je 8,2 Meter großen Very Large Telescopes des Paranal-Observatoriums auf dem Planeten Erde statt.

Die Laser feuerten bei einem Test der Leitsterneinrichtung des Observatoriums mit 4 Lasern. Schlussendlich kämpfen sie gegen Unschärfe der Turbulenzen in der Atmosphäre, indem sie künstliche Leitsterne erzeugen. Diese Leitsterne entstehen im Teleskopsichtfeld in großer Höhe durch die Emissionen von Natriumatomen, die von den Laserstrahlen angeregt werden.

Anhand der Leitstern-Bildschwankungen werden Atmosphärenunschärfen in Echtzeit durch die Steuerung eines verformbaren Spiegels im Strahlengang des Teleskops korrigiert. Mit dieser Technik, die als adaptive Optik bezeichnet wird, entstehen Bilder an der Beugungsgrenze des Teleskops. Das entspricht der Schärfe, die man erreichen würde, wenn das Teleskop im Weltraum wäre.

Zur Originalseite