Tanz mit NGC 3718

Im Bild sind verzerrte Galaxien im Sternbild Ursa Major verteilt. In der Mitte ist eine senkrecht in die Länge gezogene, verzerrte Spiralgalaxie mit bläulichen Spiralarmen und einem gelblichen Kern, vor dem eine dunkle Staubwolke verläuft.

Bildcredit und Bildrechte: Martin Pugh (Heaven’s Mirror Observatory)

Ein genauer Blick auf dieses farbenprächtige kosmische Bild zeigt eine überraschende Anzahl naher und ferner Galaxien im Sternbild Große Bärin (Ursa Major). Die auffälligste ist NGC 3718, sie ist die gekrümmte Spiralgalaxie nahe der Mitte.

Die Spiralarme von NGC 3718 wirken verbogen und in die Länge gezogen. Sie sind von jungen blauen Sternhaufen gesprenkelt. Herausgezogene Staubbahnen verdecken die gelbliche Zentralregion. Etwa 150.000 Lichtjahre rechts daneben befindet sich NGC 3729, eine weitere große Spiralgalaxie. Die spezielle Erscheinung von NGC 3718 lässt vermuten, dass die beiden durch Gravitation verbunden sind. Das Galaxienpaar ist etwa 52 Millionen Lichtjahre entfernt.

Oben ist die interessante Hickson Group 56 über NGC 3718 abgebildet. Die Hickson Group 56 besteht aus fünf miteinander wechselwirkenden Galaxien. Sie ist mehr als 400 Millionen Lichtjahre entfernt. Dieses Bild gewann den David-Malin-Astrofotografiewettbewerb 2013.

Zur Originalseite

Galaxienkollisionen: Simulation versus Beobachtungen

Bildcredits: NASA, ESA; Visualisierung: Frank Summers (STScI); Simulation: Chris Mihos (CWRU) und Lars Hernquist (Harvard).

Was passiert, wenn zwei Galaxien kollidieren? Es dauert länger als eine Milliarde Jahre. Trotzdem sind solche Titanenkämpfe ziemlich häufig.

Galaxien bestehen hauptsächlich aus leerem Raum. Daher kollidieren meist nicht ihre Sterne. Stattdessen verzerrt oder zerstört die Schwerkraft einer Galaxie die andere Galaxie. Am Ende können die Galaxien verschmelzen und eine größere Galaxie bilden. Doch die ausgedehnten Gas- und Staubwolken in Galaxien kollidieren. Dabei lösen sie Wellen an Sternbildung aus. Diese dauern sogar während der Kollision an.

Das Video zeigt eine Computersimulation, bei der zwei große Spiralgalaxien kollidieren. Die Animation wird von Standbildern mit echten Galaxien unterbrochen. Diese Standbilder wurden mit dem Weltraumteleskop Hubble aufgenommen. Unsere Milchstraße hat in der Vergangenheit schon mehrere kleinere Galaxien aufgenommen. In einigen Milliarden Jahren soll sie sogar mit der größeren Andromedagalaxie verschmelzen. Die Andromedagalaxie ist unsere galaktische Nachbarin.

Zur Originalseite

Die ausgefranste Galaxie NGC 3169

Mitten im Bild leuchten zwei schräge Galaxien, die an Augen erinnern. Ihre Spiralarme wurden durch Gezeiten bei engen Begegnungen verzerrt.

Bildcredit und Bildrechte: Adam Block, Mt. Lemmon SkyCenter, Universität Arizona

Diese kosmische Szenerie ist etwa 70 Millionen Lichtjahre entfernt. Sie ist unter dem hellen Stern Regulus im blassen Sternbild Sextant hingewürfelt. Links ist die ausgefranste helle Spiralgalaxie NGC 3169. Ihre schönen Arme sind zu ausladenden Gezeitenschweifen verzerrt, weil NGC 3169 (links) und ihre Nachbarin NGC 3166 gravitativ wechselwirken. Das ist sogar für helle Galaxien im lokalen Universum ein häufiges Schicksal.

Die herausgezogenen Sternbögen und -schwaden sind Anzeichen für Wechselwirkung durch Gravitation. Auf diesem detailreichen, bunten Galaxien-Gruppenbild scheinen sie förmlich zu wuchern. Das Bild ist 20 Bogenminuten breit. In der geschätzten Entfernung der Gruppe sind das etwa 400.000 Lichtjahre. Rechts zeigt sich die kleinere Galaxie NGC 3165.

NGC 3169 leuchtet im gesamten Spektrum von Radio- bis Röntgenstrahlung, und sie enthält einen aktiven galaktischen Kern. Wahrscheinlich befindet sich darin ein sehr massereiches schwarzes Loch.

Zur Originalseite

GRAILs Karte der Mondgravitation

Das Bild zeigt den Mond in sehr ungewöhnlichen Farben. Die Oberfläche ist gelb, die Krater sind rot und blau gefärbt und von roten und blauen Wällen umgeben. Die Farben zeigen die Gravitation der Regionen.

Bildcredit und Bildrechte: NASA, JPL-Caltech, MIT, GSFC, SVS

Wie entstand der Mond? Um das herauszufinden, startete die NASA 2011 die Zwillingssonden Gravity Recovery and Interior Laboratory (GRAIL). Sie umkreisten den Mond und kartierten seine Oberflächengravitation so detailreich wie nie zuvor.

Oben ist eine Gravitationskarte von GRAIL abgebildet. Sie entstand bei dieser Mission. Regionen mit etwas schwächerer Gravitation sind blau dargestellt. Gebiete mit geringfügig stärkerer Gravitation sind rot abgebildet.

Analysen der GRAIL-Daten zeigen, dass der Mond eine unerwartet dünne Kruste hat. Sie ist weniger als zirka 40 Kilometer tief. Die allgemeine Zusammensetzung des Mondes ist ähnlich wie die der Erde. Auch andere überraschende Strukturen, die entdeckt wurden, stärken die Hypothese, dass der Mond nach einer gewaltigen Kollision aus Material der Erde entstand. Die Kollision fand in den frühen Jahren unseres Sonnensystems vor etwa 4,5 Milliarden Jahren statt.

Als der Treibstoff zur Neige ging, wurde die Mission beendet. Die beiden GRAIL-Satelliten Ebb und Flow stürzten mit etwa 6000 Kilometern pro Stunde in einen Mondkrater.

Zur Originalseite

Tscheljabinsk-Meteorblitz

Über den Silhouetten blattloser Bäume strahlt ein gleißend heller Blitz, der Himmel hinter den Bäumen ist weiß.

Bildcredit und Bildrechte: Marat Ahmetvaleev

Am 15. Februar fiel ein Meteoroid zur Erde. Er raste etwa um 9:20 Uhr Ortszeit 20 bis 30 Kilometern hoch über die russische Stadt Tscheljabinsk. Der Meteor raste ursprünglich mit etwa 20 Kilometern pro Sekunde dahin. Nachdem er in die tiefere Atmosphäre eingedrungen war, erzeugte die explosive Abbremsung einen Blitz, der heller war als die Sonne.

Der Fotograf Marat Ametvaleev wurde bei seiner morgendlichen Sonnenaufgangssitzung überrascht, als er Panoramabilder der frostbedeckten Landschaft fotografierte. Er schoss dieses Bild der gleißenden Feuerkugel und seiner nachleuchtenden Spur.

Das 17 Meter große Weltraumgestein hatte eine Masse von 7000 bis 10.000 Tonnen. Die bei der Explosion freigesetzte Energie wird auf 500 Kilotonnen geschätzt. Das Tscheljabinsk-Ereigniss ist das größte uns bekannte seit dem Tunguska-Einschlag 1908. Ein Ereignis dieses Ausmaßes wird durchschnittlich einmal in 100 Jahren erwartet.

Zur Originalseite

Asteroiden in der Ferne

Vor einem stark vergrößerten Sternenfeld verläuft ein blauer Bogen. Es ist ein Asteroid, der auf einem Archivbild des Weltraumteleskops Hubble gefunden wurde.

Bildcredit: R. Evans und K. Stapelfeldt (JPL), WFPC2, HST, NASA

Jeden Tag treffen Gesteinsbrocken aus dem Weltraum auf die Erde. Je größer das Felsstück, desto seltener wird die Erde getroffen.

Viele Kilogramm Weltraumstaub klatschen täglich auf die Erde. Größere Stückchen erscheinen zunächst als heller Meteor. Tennisballgroße Steine und Eiskugeln streifen jeden Tag durch unsere Atmosphäre. Die meisten verdampfen rasch und vollständig.

Eine erhebliche Bedrohung geht von Felsbrocken mit einem Durchmesser von um die 100 Meter aus. Solche Brocken treffen die Erde etwa alle 1000 Jahre. Wenn ein Objekt dieser Größe einen Ozean trifft, kann es erhebliche Flutwellen verursachen. Diese können sogar ferne Ufer verwüsten. Kollisionen mit massereichen Asteroiden, die größer sind als 1 km, sind noch seltener. Sie ereignen sich üblicherweise in Abständen von Millionen Jahren. Sie können aber wahrhaft globale Auswirkungen haben.

Viele Asteroiden bleiben unentdeckt. 1998 wurde einer auf diesem Archivbild des Weltraumteleskops Hubble gefunden. Es ist der lange, blaue gebogene Streifen.

Erst letztes Jahr entdeckte man den 50 Meter große Asteroiden 2012 DA14. Er zieht am Freitag innerhalb der Umlaufbahn geosynchroner Satelliten vorbei. Eine Kollision mit einem großen Asteroiden beeinflusst den Erdorbit weniger stark, als der aufgewirbelte Staub das Klima der Erde beeinträchtigen würde. Das Ergebnis wäre wahrscheinlich eine globale Auslöschung vieler Lebensformen. Diese würde sogar das aktuelle Artensterben, das derzeit stattfindet, in den Schatten stellen.

Zur Originalseite

NGC 922: Kollision einer Ringgalaxie

Die Galaxie NGC 922 besitzt viele rötlich leuchtende Sternbildungsregionen, sie sind auf diesem Bild wie ein Bogen angeordnet und erinnern an Wellen in einem Teich, wenn ein Stein ins Wasser fällt.

Bildcredit: NASA, ESA; Danksagung: Nick Rose

Warum enthält diese Galaxie so viele große Schwarze Löcher? Das ist nicht bekannt. Sicher ist, dass NGC 922 eine Ringgalaxie ist, die vor etwa 300 Millionen Jahren durch die Kollision einer großen und einer kleinen Galaxie entstand.

Wenn ein Stein in einen Teich fällt, schlägt er kreisförmige Wellen. Auf ähnliche Weise liefen bei der urzeitlichen Kollision Wellen aus stark verdichtetem Gas vom Einschlagspunkt in der Mitte aus. Teilweise wurden diese Wellen zu Sternen verdichtet.

Oben wurde NGC 922 mit dem Weltraumteleskop Hubble abgebildet. Der komplexe Ring verläuft links. Aufnahmen von NGC 922 mit dem Röntgenobservatorium Chandra zeigen im Röntgenlicht mehrere leuchtende Knoten, es sind wahrscheinlich große Schwarze Löcher.

Die hohe Anzahl massereicher Schwarzer Löcher war etwas überraschend, denn die Gase in NGC 922 enthalten viele schwere Elemente. Das hätte die Entstehung von so massereichen Objekten verhindern sollen. Die Forschung wird sicherlich fortgesetzt.

NGC 922 ist etwa 75.000 Lichtjahre groß und ungefähr 150 Millionen Lichtjahre entfernt. Mit einem kleinen Teleskop sieht man die Galaxie im Sternbild Chemischer Ofen (Fornax) zu sehen.

Zur Originalseite

Arp 188 und der Schweif der Kaulquappe

Die Galaxie im Bild wurde kräftig durcheinander gewirbelt. Nach links unten breitet sich ein langer Schweif aus, den eine eindringende Galaxie herausgezogen hat.

Bildcredit: Hubble-Vermächtnisarchiv, ESA, NASA; Bearbeitung: Bill Snyder (Heavens Mirror Observatory)

Ferne Galaxien bilden eine dramatische Kulisse für die zerrissene Spiralgalaxie Arp 188. Sie wird auch Kaulquappengalaxie genannt. Das Panorama entstand aus Bilddaten des Hubble-Vermächtnisarchivs. Die kosmische Kaulquappe ist etwa 420 Millionen Lichtjahre entfernt. Sie befindet sich im nördlichen Sternbild Drache. Ihr markanter Schweif ist ungefähr 280.000 Lichtjahre lang. Er besitzt strukturlose, massereiche blaue Sternhaufen.

Es geht die Mär, dass eine kompaktere Eindringlingsgalaxie vor Arp 188 vorbeizog. In dieser Ansicht bewegte sie sich von rechts nach links. Sie wurde durch ihre gravitationsbedingte Anziehung um die Kaulquappe geschleudert. Bei der engen Begegnung zogen die Gezeitenkräfte Sterne, Gas und Staub aus der Spiralgalaxie heraus. Aus diesen entstand der spektakuläre Schweif. Die eindringende Galaxie liegt zirka 300.000 Lichtjahre hinter der Kaulquappe. Sie ist links oben durch die Spiralarme im Vordergrund zu sehen.

Wie ihr irdischer Namensvetter wird die Kaulquappe wahrscheinlich ihren Schweif verlieren, wenn sie älter wird, wobei die Haufen im Schweif kleinere Begleiter der großen Spiralgalaxie bilden werden.

Zur Originalseite