Lynds Dunkler Nebel 1251

Eine Staubwolke zeichnet sich graubraun vor dem dunklen Hintergrund ab, in der Mitte ist sie kompakt und dunkel. In ihrem Inneren entstehen Sterne.

Bildcredit und Bildrechte: Long Xin

In Lynds Dunkelnebel (LDN) 1251 bilden sich Sterne. Der etwa 1000 Lichtjahre entfernte und über der Ebene unserer Galaxie driftende LDN 1251 ist auch unter dem weniger appetitlichen Namen „Nebel des fauligen Fisches“ bekannt. Die staubige Molekülwolke ist Teil eines Komplexes von Dunkelnebeln, die in Richtung der Cepheus-Flare-Region kartiert sind.

Die astronomische Erkundung der verdunkelnden interstellaren Wolken offenbart im gesamten Spektrum energetische Schocks und Ausströmungen, die mit neugeborenen Sternen in Verbindung stehen, einschließlich des verräterischen rötlichen Leuchtens von verstreuten Herbig-Haro-Objekten, die sich im Bild verstecken. Auch weit entfernte Hintergrundgalaxien, die fast hinter der staubigen Ausdehnung begraben sind, sind beim genaueren Betrachten zu finden.

Dieser reizvolle Anblick erstreckt sich über vier Vollmonde am Himmel. Bei der geschätzten Entfernung von LDN 1251 beträgt die Ausdehnung ca. 35 Lichtjahre.

Zur Originalseite

RCW 85

Hinter lose verteilten blau leuchtenden Sternen türmt sich ein rotes Staubgebirge auf. Es ist die Emissionsregion RCW 85.

Bildcredit und Bildrechte: Martin Pugh

Aus dem astronomischen Katalog von Rodgers, Campbell und Whiteoak von 1960 leuchtet die Emissionsregion RCW 85 am südlichen Nachthimmel zwischen den hellen Sternen Alpha und Beta Centauri. In ca. 5.000 Lichtjahren Entfernung ist die dunstige interstellare Wolke aus leuchtendem Wasserstoffgas und Staub nur schwach zu erkennen. Doch in dieser kosmischen Himmelslandschaft, die aus 28 Stunden Schmal- und Breitbandbelichtung besteht, sind detaillierte Strukturen entlang klar definierter Ränder innerhalb von RCW 85 zu erkennen.

Der dramatische Nebel, der an Formen in anderen stellaren Kinderstuben erinnert, in denen Gas- und Staubwolken durch energiereiche Winde und die Strahlung neugeborener Sterne geformt werden, wird auch als Teufelssturm bezeichnet. Dieser Bildausschnitt erstreckt sich bei der geschätzten Entfernung von RCW 85 über ca. 100 Lichtjahre.

Zur Originalseite

Das nebulöse Reich von WR 134

Der Nebel im Bild stammt vom Wolf-Rayet-Stern WR 134 im Sternbild Schwan. In der Mitte ist eine runde Struktur, die nach links oben in markanten blauen Farbtönen leuchtet. Der rechte Teil des Bildes ist mit rötlichen Nebeln gefüllt. Im Bild befinden sich nur wenige schwach leuchtende Sterne.

Bildcredit und Bildrechte: Xin Long

Dieser kosmische Schnappschuss, der mit Schmalbandfiltern aufgenommen wurde, deckt ein Gesichtsfeld ab, das mehr als doppelt so groß ist wie der Vollmond, und zwar innerhalb der Grenzen des Sternbilds Schwan. Er zeigt den hellen Rand eines ringförmigen Nebels, der durch das Glühen von ionisiertem Wasserstoff und Sauerstoff gezeichnet ist.

Eingebettet in die interstellaren Wolken der Region sind die komplexen, leuchtenden Bögen Abschnitte von Materieschalen, die vom Wind des Wolf-Rayet-Sterns WR 134, dem hellsten Stern nahe der Bildmitte, aufgewirbelt wurden. Schätzungen nach ist WR 134 etwa 6000 Lichtjahre entfernt, so dass der Rand einen Durchmesser von über 100 Lichtjahren hat.

Die massereichen Wolf-Rayet-Sterne, die ihre äußeren Hüllen in kräftigen Sternwinden abwerfen, haben ihren nuklearen Brennstoff in rasantem Tempo verbrannt und beenden diese letzte Phase der Entwicklung massereicher Sterne mit einer spektakulären Supernova-Explosion. Die stellaren Winde und die abschließende Supernova reichern das interstellare Material mit schweren Elementen an, die in zukünftige Generationen von Sternen eingebaut werden.

Zur Originalseite

Molekülwolke Chamäleon I

In einem braunen, undurchsichtigen Nebel leuchtet ein blauer Reflexionsnebel mit einem Stern in der Mitte. Links unter dem blauen Nebel ist ein orangefarbener trichterförmiger Nebel. Außen sind kleine Sterne sehr dicht verteilt.

Bildcredit und Bildrechte: Amiel Contuliano

Dunkle Wolken und helle Nebel in dieser Teleskopansicht des Südhimmels sind verräterische Anzeichen für junge Sterne und aktive Sternentstehung. Sie liegen in nur 650 Lichtjahren Entfernung an der Grenze zwischen der lokalen Blase und dem Chamäleon-Molekülwolkenkomplex.

Zu den Regionen mit jungen Sternen, die als staubige Reflexionsnebel aus dem Cederblad-Katalog von 1946 identifiziert wurden, gehören das C-förmige Ced 110 direkt oberhalb und rechts von der Mitte und das bläuliche Ced 111 darunter. Der orangefarbene V-förmige Chamäleon-Infrarotnebel (Cha IRN), der ebenfalls aus dem Bild heraussticht, wurde von Material geformt, das von einem neu entstandenen massearmen Stern stammt. Das gut komponierte Bild erstreckt sich über 1,5 Grad. Das sind etwa 17 Lichtjahre bei der geschätzten Entfernung der nahe gelegenen Molekülwolke Chamäleon I.

Zur Originalseite

Das Weltraumteleskop Euclid zeigt M78

Riesige fliederfarben leuchtende Nebel sind von braunen Staubwolken überzogen. Im Hintergrund sind Sterne dicht verteilt.

Bildcredit und Lizenz: ESA, Euclid, Euclid-Konsortium, NASA; Bearbeitung: J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi

Sternentstehung kann chaotisch sein. Um herauszufinden, wie chaotisch sie ist, hat das neue Euclid-Teleskop der ESA, das die Sonne umkreist, kürzlich das bisher detaillierteste Bild der hellen Sternentstehungsregion M78 aufgenommen. M78 befindet sich in der Nähe der Bildmitte in einer Entfernung von nur etwa 1300 Lichtjahren und hat einen leuchtenden Kern, der sich über etwa 5 Lichtjahre erstreckt.

Das hier gezeigte Bild wurde sowohl im sichtbaren als auch im infraroten Licht aufgenommen. Die violette Färbung im Zentrum von M78 wird durch dunklen Staub verursacht, der bevorzugt das blaue Licht heißer, junger Sterne reflektiert. Komplexe Staubbahnen und Filamente können in dieser wunderschönen und aufschlussreichen Himmelslandschaft verfolgt werden.

Links oben befindet sich das zugehörige Sternentstehungsgebiet NGC 2071, während rechts unten ein drittes Sternentstehungsgebiet zu sehen ist. Diese Nebel sind alle Teil des riesigen Orion-Molekülwolkenkomplexes, den man selbst mit einem kleinen Teleskop nördlich des Oriongürtels finden kann.

Mehr Sky Candy: Neue Bilder von Euclid
Zur Originalseite

Polarlicht über der Banks Peninsula

Hinter der Küste über einem wogenden Meer, aus dem ein Steinturm herausragt, leuchtet über dem Horizont ein Polarlicht. Es ist senkrecht gestreift, unten verläuft ein gelbgrüner Bogen, oben leuchten magentafarbene Strahlen.

Bildcredit und Bildrechte: Kavan Chay

Dieses gut komponierte Panorama blickt von der Banks Peninsula in der Nähe von Christchurch auf der Südinsel Neuseelands nach Süden. Die Basis eines turmartigen Felsenstapels ist im Vordergrund zu sehen, mit den Sternen des Kreuz des Südens am oberen Bildrand und dem südlichen Himmelspol der Erde in der Nähe der Bildmitte. Die Aufnahme vom 11. Mai zeigt die leuchtenden Polarlichter, die das sternenübersäte Südmeer und den Himmel dominieren.

Die schimmernden Lichter des Südens waren Teil der ausgedehnten Polarlichter, die Himmelsbeobachter in der nördlichen und südlichen Hemisphäre rund um den Planeten Erde erfreuten und durch intensive geomagnetische Stürme verursacht wurden. Das extreme Weltraumwetter wurde durch die Auswirkungen koronaler Massenauswürfe ausgelöst, die von der mächtigen aktiven Sonnenregion AR 3664 ausgingen.

Zur Originalseite

Simulation: Zwei Schwarze Löcher verschmelzen

Illustrationscredit: Projekt zur Simulation extremer Raumzeiten

Entspannen Sie sich und beobachten Sie, wie zwei schwarze Löcher verschmelzen. Inspiriert von der ersten direkten Entdeckung von Gravitationswellen im Jahr 2015, wird dieses Simulationsvideo in Zeitlupe abgespielt, würde aber in Echtzeit etwa eine Drittelsekunde dauern. Auf einer kosmischen Bühne sind die schwarzen Löcher vor Sternen, Gas und Staub platziert. Ihre extreme Schwerkraft bündelt das Licht hinter ihnen zu Einsteinringen, während sie sich spiralförmig annähern und schließlich zu einem einzigen verschmelzen.

Die sonst unsichtbaren Gravitationswellen, die beim schnellen Zusammenwachsen der massiven Objekte entstehen, bewirken, dass das sichtbare Bild innerhalb und außerhalb der Einsteinringe auch nach der Verschmelzung der schwarzen Löcher noch wackelt und schwappt. Die von LIGO entdeckten Gravitationswellen mit der Bezeichnung GW150914 stehen im Einklang mit der Verschmelzung von 2 schwarzen Löchern mit 36-facher und 31-facher Sonnenmasse in einer Entfernung von 1,3 Milliarden Lichtjahren. Das endgültige Schwarze Loch hat die 63-fache Masse der Sonne, wobei die restlichen 3 Sonnenmassen in Energie umgewandelt werden, die in Gravitationswellen abgestrahlt wird.

Heutiger Ereignishorizont: NASA-Woche der Schwarzen Löcher!

Zur Originalseite

Temperaturen auf dem Exoplaneten WASP-43b

Die schematische Illustration zeigt einen Planeten, der um einen Stern kreist und diesem immer dieselbe Seite zeigt. Vorne ist seine Temperatur gelb visualisiert, hinten violett.

Illustrationscredit: NASA, ESA, CSA, Ralf Crawford (STScI); Forschung: Taylor Bell (BAERI), Joanna Barstow (The Open University), Michael Roman (Universität von Leicester)

Nur 280 Lichtjahre von der Erde entfernt umkreist der jupitergroße Exoplanet WASP-43b seinen Mutterstern in gebundener Rotation einmal in 0,8 Erdtagen. Damit ist er etwa 2 Millionen Kilometer (weniger als 1/25 der Umlaufdistanz des Merkurs) von einer kleinen, kühlen Sonne entfernt. Dennoch nähern sich die Temperaturen auf der Tagseite, die immer dem Mutterstern zugewandt ist, glühenden 2500 Grad Celsius, wie das MIRI-Instrument an Bord des James-Webb-Weltraumteleskops bei Infrarot-Wellenlängen gemessen hat.

In dieser Abbildung der Umlaufbahn des heißen Exoplaneten zeigen die Webb-Messungen auch, dass die Temperaturen auf der Nachtseite über 1000 Grad Celsius bleiben. Das deutet darauf hin, dass starke äquatoriale Winde die atmosphärischen Gase auf der Tagseite zur Nachtseite transportieren, bevor sie vollständig abkühlen können.

Der Exoplanet WASP-43b ist nun offiziell als Astrolábos bekannt, und sein Mutterstern vom Typ K wurde auf den Namen Gnomon getauft. Die Infrarotspektren von Webb weisen Wasserdampf sowohl auf der Nacht- als auch auf der Tagseite des Planeten nach und geben Aufschluss über die Wolkendecke von Astrolábos.

Zur Originalseite