Spitzers Orion

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech

Beschreibung: Nur wenige kosmische Aussichten regen die Fantasie so an wie der Orionnebel, ein riesiges, etwa 1500 Lichtjahre entferntes Sternbildungsgebiet. Dieses Infrarotbild des Weltraumteleskops Spitzer zeigt etwa 40 Lichtjahre dieser Region und wurde aus Daten erstellt, welche die Helligkeit junger Sterne im Nebel erfassen sollten, von denen viele noch von staubigen, Planeten bildenden Scheiben umgeben sind.

Orions junge Sterne sind nur etwa eine Million Jahre alt, das Alter der Sonne beträgt im Vergleich dazu 4,6 Milliarden Jahre. Die heißesten Sterne der Region befinden sich im Trapezhaufen, dieser ist der hellste Haufen nahe der Bildmitte.

Spitzer wurde am 25. August 2003 in eine Umlaufbahn um die Sonne gestartet. Das Kühlmittel des Teleskops – flüssiges Helium – ging im Mai 2009 zur Neige. Das Infrarot-Weltraumteleskop wird jedoch weiter betrieben, das Ende seiner Mission ist für 30. Januar 2020 vorgesehen. Diese Falschfarbenansicht wurde 2010 in zwei Kanälen aufgenommen, die trotz Spitzers wärmerer Betriebstemperatur immer noch für Infrarotlicht empfindlich sind.

Zur Originalseite

Elemente des Nachleuchtens

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC/SAO

Beschreibung: Massereiche Sterne verbrennen im Laufe ihres kurzen Lebens rasend schnell Kernbrennstoff. Durch Fusion werden bei extremen Temperaturen und Dichten um den Sternkern herum die Kerne leichter Elementen wie Wasserstoff und Helium zu schwereren Elementen wie Kohlenstoff, Sauerstoff etc. kombiniert – in einer Reihe, die mit Eisen endet. Daher schleudert eine Supernovaexplosion – das unvermeidliche und spektakuläre Ende eines massereichen Sterns – Überreste in den Weltraum zurück, die mit schwereren Elementen angereichert sind, welche später in andere Sterne und Planeten (und Menschen!) eingebaut werden.

Dieses detailreiche Falschfarben-Röntgenbild des Chandra-Observatoriums im Orbit zeigt so eine heiße, expandierende stellare Trümmerwolke, die etwa 36 Lichtjahre groß ist. Dieser junge Supernovaüberrest ist als G292.0+1.8 katalogisiert und liegt im südlichen Sternbild Zentaur. Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde vor ungefähr 1600 Jahren.

Bläuliche Farben zeigen viele Millionen Grad heiße Gasfasern, die besonders viel Sauerstoff, Neon und Magnesium enthalten. Ein punktförmiges Objekt links unter der Mitte auf diesem Chandrabild lässt vermuten, dass im Nachleuchten der anreichernden Supernova auch ein Pulsar entstand – ein rotierender Neutronenstern, Überrest des kollabierten Sternkerns.

Das faszinierende Bild wurde zur 20-Jahresfeier des Röntgenobservatoriums Chandra veröffentlicht.

Zur Originalseite

Fermis Wissenschaftsfinalisten

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Mit der Fermi-Wissenschaftsstichwahl feiern wir 10 Jahre Forschung im Hochenergieuniversum mit dem Gammastrahlen-Weltraumteleskop Fermi. Diese beiden Finalisten haben alle früheren Abstimmungsrunden im Wettbewerb gewonnen und treten als letzte gegeneinander an.

Die beiden digitalen Illustrationen aus einer Liste mit Fermis 16 interessantesten Entdeckungen sind die Spitzenkandidaten des Wettbewerbs, sie setzten sich im Semifinale gegen den 12. Kandidaten „Neue Hinweise auf Dunkle Materie“ und den 14. „Sternbeben in einem Magnetarsturm“ durch. Links sind neu entdeckte, unvorhergesagte Gammastrahlenblasen über und unter der Ebene unserer Milchstraße mit einem Durchmesser von 25.000 Lichtjahren abgebildet. Rechts kollidieren gewaltsam verschmelzende Neutronensterne des ersten Gravitationswellenereignisses, das je durch Gammastrahlen entdeckt wurde.

Wählen Sie eins der Bilder und geben Sie hier Ihre Stimme ab, um das beliebteste wissenschaftliche Ergebnis aus Fermis erster Dekade zu wählen.

Zur Originalseite

Planck-Karten des Mikrowellenhintergrundes

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Europäische Weltraumorganisation, Planck Collaboration

Beschreibung: Woraus besteht unser Universum? Um das herauszufinden, startete die ESA den Satelliten Planck, der von 2009 bis 2013 so detailreich wie nie zuvor leichte Temperaturunterschiede auf der ältesten optischen Oberfläche kartierte, die wir kennen – dem Himmelshintergrund, der vor Milliarden Jahren übrig blieb, als unser Universum erstmals für Licht transparent wurde.

Dieser kosmische Mikrowellenhintergrund ist in allen Richtungen sichtbar. Es ist ein komplexer Bildteppich, der die beobachteten heißen und kalten Muster nur dort aufweist, wo das Universum aus bestimmten Arten von Energie besteht, die sich auf bestimmte Weise entwickelt haben. Letzte Woche wurden die endgültigen Ergebnisse veröffentlicht. Diese bestätigen erneut, dass ein Großteil unseres Universums aus rätselhafter, unbekannter Dunkler Energie besteht, und dass auch ein Großteil der verbleibenden Materienenergie seltsam dunkel ist.

Zusätzlich bestätigen die „finalen“ 2018er-Planckdaten eindrucksvoll, dass das Alter des Universums etwa 13,8 Milliarden Jahre beträgt, und dass die lokale Expansionsrate, die als Hubblekonstante bezeichnet wird, 67,4 (+/- 0,5) km/sec/Mpc beträgt. Seltsamerweise ist diese durch Beobachtung des frühen Universums ermittelte Hubblekonstante etwas niedriger ist als jene, die durch andere Methoden im späten Universum ermittelt wurde. Die dadurch entstehende Diskrepanz sorgt für viele Diskussionen und Mutmaßungen.

Zur Originalseite

Endlich GLAST

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit:  NASA, DOE, Arbeitsgemeinschaft Gammastrahlen-Weltraumteleskop Fermi

Beschreibung: Diese Delta-II-Rakete, die vor langer Zeit von einem sehr nahen Planeten durch eine wogende Rauchwolke aufstieg, verließ am 11. Juni 2008 um 12:05 Uhr EDT die Startrampe 17-B der Luftwaffenstation Cape Canaveral. Gemütlich in der Ladebucht lag GLAST, das Gammastrahlen-Großflächen-Weltraumteleskop.

GLASTs Detektortechnologie wurde für den Einsatz in terrestrischen Teilchenbeschleunigern entwickelt. Daher kann GLAST im Orbit Gammastrahlen von extremen Umgebungen über der Erde und im fernen Universum aufspüren, darunter in sehr massereichen Schwarzen Löchern in den Zentren ferner aktiver Galaxien und die Quellen mächtiger Gammastrahlenausbrüche. Diese eindrucksvollen kosmischen Beschleuniger erreichen Energien, die in erdgebundenen Laboren nicht möglich sind.

Seine Bezeichnung lautet nun Gammastrahlen-Weltraumteleskop Fermi. Am 10. Jahrestag seines Starts mögen die Fermi-Wissenschaftsendspiele beginnen.

Zur Originalseite

Fermi wissenschaftliche Stichwahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Das Gammastrahlenteleskop Fermi der NASA wurde am 11. Juni 2008 in die Umlaufbahn gebracht. Seine Instrumente erkennen Gammastrahlen – diese sind Licht, das Tausende bis Hunderte Milliarden Mal energiereicher ist als das, was wir mit unseren Augen sehen.

Während der letzten zehn Jahre führte Fermis energiereiche Forschungsreise zu einer Fülle erstaunlicher Entdeckungen, von extremen Umgebungen über unserem schönen Planeten bis hin ins ferne Universum. Nun können Sie Fermis bisher bestes Ergebnis wählen.

Zu Fermis 10. Jahrestag wurden Bilder, welche 16 wissenschaftliche Ergebnisse darstellen, ausgewählt und zu Gruppen angeordnet. Folgen Sie diesem Link und wählen Sie in der ersten Runde aus jedem Paar Ihre Favoriten. Alle zwei Wochen findet die Wahl der nächsten Runde statt – kommen Sie wieder! Der Sieger des Fermi-Finales wird am 6. August veröffentlicht – zum zehnjährigen Jubiläum der ersten wissenschaftlichen Daten von Fermi.

Zur Originalseite

JWST: Geister und Spiegel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Chris Gunn, NASA

Beschreibung: Es sind keine Geister, die über dem James-Webb-Weltraumteleskop schweben. Es steht da mit goldgetönten Spiegelsegmenten und gefaltetem Tragwerk im Reinraum der Raumfahrtsysteme-Entwicklungs- und Montageanlage des Goddard-Raumfahrtzentrums, doch die Lichter sind ausgeschaltet. Nachfolgende Vibrations- und Akustiktests, helle Blitze und Ultraviolettlichter werden über das stehende Teleskop gespielt, um nach Kontamination zu suchen, die im abgedunkelten Raum leichter erkennbar ist.

Durch die lange Belichtungszeit der Kamera werden im Dunklen die wandernden Lichter und Ingenieure zu geisterhaften Erscheinungen verwischt. Das James-Webb-Weltraumteleskop ist Hubbles wissenschaftlicher Nachfolger. Es ist für Infrarotforschung im frühen Universum optimiert. Sein Start ist für 2018 auf Französisch-Guayana mit einer Ariane 5 der Europäischen Weltraumagentur geplant.

Zur Originalseite

Ferimis First Light

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit: NASA, DOE, das internationale LAT-Team

Beschreibung: Das Gamma-ray Large Aera Space Telescope (GLAST), das am 11. Juni gestartet wurde um das Universum in extremen Energiebereichen zu erforschen, wurde nun offiziell in Fermi Gamma-ray Space Telescope umbenannt, zu Ehren des Nobelpreisträgers Enrico Fermi (1901-1954), Pionier der Hochenergiephysik. Nach der Testphase senden nun die beiden Instrumente Fermis, der Gamma-ray Burst Monitor (GBM) und das Large Area Telescope (LAT), regelmäßig Daten.

Dieses Falschfarbenbild zeigt Fermis erste Karte des Gammastrahlen-Himmels von LAT. Es zeigt den ganzen Himmel, das Zentrum unserer Milchstraße und die galaktische Ebene wurden über die Bildmitte projiziert.

Was leuchtet am Gammastrahlenhimmel? In der galaktischen Ebene kollidiert energiereiche kosmische Strahlung mit Gas und Staub und erzeugt das diffuse Gammastrahlen-Leuchten. Starke Emissionen von rotierenden Neutronensternen oder Pulsaren und weit entfernten aktiven Galaxien, bekannt als blazars, sind zu erkennen, wenn Sie den Mauspfeil über die Karte schieben.

Als Vorspiel für künftige Entdeckungen kombiniert dieses bemerkenswerte Ergebnis die Beobachtungen von nur 4 Tagen, was einem Jahr an Beobachtungen mit dem Compton-Gammastrahlenteleskop in den 1990er-Jahren entspricht. Zusätzlich zur Möglichkeit Gammastrahlenblitze zu beobachten erlaubt die stark verbesserte Empfindlichkeit Fermi tiefer in das Hochenergie-Universum hinauszublicken.

Zur Originalseite