Die wolkigen Kerne aktiver Galaxien


Bildcredit: NASA’s GSFC, W. Steffen (UNAM)

Beschreibung: Wie sieht es aus, wenn man ins Zentrum einer aktiven Galaxie reist? Vermutlich enthalten die meisten Galaxienzentren Schwarze Löcher, Millionen Mal massereicher als unsere Sonne. Die Räume, die diese sehr massereichen Schwarzen Löcher umgeben, sind jedoch vielleicht alles andere als ruhig, sie flackern in vielen Farben, daher trägt die gesamte Objektklasse die Bezeichnung „Aktive galaktische Kerne“ (AGK).

Dieses Video zeigt, wie ein aktiver galaktischer Kern aus der Nähe aussehen könnte. AGK besitzen üblicherweise massereiche Akkretionsscheiben, die das zentrale Schwarze Loch speisen, und mächtige Strahlen schießen elektrisch geladene Materie weit ins umgebende Universum.

Wolken aus Gas und Staub umkreisen die zentralen Schwarzen Löcher, und in jüngster Zeit erkannte man, dass diese so dicht sind, dass sie sogar gelegentlich die alles durchdringenden Röntgenstrahlen ausblenden, sodass sie uns nicht erreichen. Solche Trübungen des Röntgenlichtes können Stunden oder Jahre dauern und wurden bei der Analyse von Daten entdeckt, die im Laufe von mehr als einem Jahrzehnt vom RossiX-ray-Timing-Explorer (RXTE) der NASA gewonnen wurden.

Ist Ihre Postkarte angekommen? Sehen Sie nach!
Zur Originalseite

Schwere Strahlen eines Schwarzen Lochs in 4U1630-47

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, CXC, M. Weiss

Beschreibung: Woraus bestehen die Strahlen eines Schwarzen Lochs? Viele Schwarze Löcher in Sternsystemen sind sicherlich von Scheiben aus Gas und Plasma umgeben, das durch Gravitation von einem nahe gelegenen Begleitstern eingesaugt wird. Ein Teil dieser Materie endet, nachdem sie sich dem Schwarzen Loch genähert hat, indem sie vom Sternsystem in Form mächtiger Strahlen ausgestoßen wird, die von den Polen des rotierenden Schwarzen Lochs ausströmen. Aktuelle Hinweise lassen den Schluss zu, dass diese Strahlen nicht nur aus Elektronen und Protonen bestehen, sondern auch die Kerne schwerer Elemente wie Eisen und Nickel enthalten. Die Entdeckung wurde im System 4U1630-47 gemacht, und zwar mithilfe einer kompakten, von CSIRO betriebenen Anordnung an Radioteleskopen im Osten Australiens sowie dem Satelliten XMM-Newton der Europäischen Weltraumorganisation in der Erdumlaufbahn. Das Sternsystem 4U1630-47 ist oben als künstlerische Illustration abgebildet, rechts steht ein großer blauer Stern, und von einem Schwarzen Loch im Zentrum der Akkretionsscheibe auf der linken Seite strömen Strahlen aus. Obwohl das Sternsystem 4U1630-47 vermutlich nur ein kleines, wenige Sonnenmassen schweres Schwarzes Loch enthält, könnten die Folgerungen aus diesen Ergebnissen größer sein: dass größere Schwarze Löcher ebenfalls Strahlen massereicher Kerne in den Kosmos ausstrahlen.

Klick in den Hyperraum: APOD-Zufallsgenerator
Zur Originalseite

Rotationsbeschleunigung eines massereichen Schwarzen Lochs

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrations-Credit: Robert Hurt, NASA/JPL-Caltech

Beschreibung: Wie schnell kann sich ein Schwarzes Loch drehen? Wenn sich ein Objekt aus normaler Materie zu schnell dreht, bricht es auseinander. Doch ein Schwarzes Loch sollte nicht auseinanderbrechen können – und seine maximale Rotationsgeschwindigkeit ist tatsächlich nicht bekannt. Theoretiker modellieren schnell rotierende Schwarze Löcher üblicherweise mit der Kerr-Metrik zu Einsteins Allgemeiner Relativitätstheorie, die mehrere überraschende und ungewöhnliche Dinge vorhersagt. Seine vielleicht am einfachsten nachprüfbare Prognose ist jedoch, dass Materie, die in ein mit maximaler Geschwindigkeit rotierendes Schwarzes Loch fällt, zuletzt zuletzt sichtbar sein sollte, wenn sie dieses annähernd mit Lichtgeschwindigkeit umkreist, wie man aus großer Entfernung beobachten kann. Diese Prognose wurde kürzlich von den Statelliten NuSTAR der NASA und XMM der ESA getestet, und zwar durch Beobachtung des sehr massereichen Schwarzen Lochs im Zentrum der Spiralgalaxie NGC 1365. Die Grenze nahe der Lichtgeschwindigkeit wurde bestätigt, indem man die Aufheizung und die Verbreiterung der Spektrallinien von Kernemissionen nahe dem inneren Rand der umgebenden Akkretionsscheibe vermaß. Oben zeigt eine künstlerische Illustration eine Akkretionsscheibe aus normaler Materie, die um ein Schwarzes Loch wirbelt, mit einem Strahl, der aus der Oberseite strömt. Da Materie, die zufällig in das Schwarze Loch fällt, die Rotation eines Schwarzen Lochs nicht so stark beschleunigen sollte, bestätigen die Messungen von NuSTAR und XMM auch die Existenz der umgebenden Akkretionsscheibe.

Zur Originalseite

GRO J1655-40: Hinweis auf ein rotierendes schwarzes Loch

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit: April Hobart, CXC

Beschreibung: In der Mitte eines Strudels aus heißem Gas steckt wahrscheinlich ein Ungeheuer, das noch nie direkt gesehen wurde: ein schwarzes Loch. Untersuchungen des hellen Lichtes, das von dem wirbelnden Gas ausgeht, weisen häufig nicht nur auf das Vorhandensein eines schwarzen Loches hin, sondern auch auf dessen wahrscheinliche Eigenschaften. Das Gas zum Beispiel, das GRO J1655-40 umgibt, weist, wie man herausfand, ein ungewöhnliches Flackern mit einer Frequenz von 450 Mal pro Sekunde auf. Bei einer vorherigen Masse des Zentralobjektes von geschätzten sieben Sonnenmassen kann die Frequenz des schnellen Flackerns durch ein schwarzes Loch erklärt werden, das sehr rasch rotiert. Welche physikalischen Wirkungsmechanismen das Flackern sowie eine langsamere, quasi-periodische Schwingung (QPO) in Akkretionsscheiben schlussendlich verursachen – schwarze Löcher und Neutronensterne bleiben weiterhin Gegenstand zahlreicher Untersuchungen.

Zur Originalseite

Hüllen um den Mikroquasar Cygnus X-1

Siehe Erklärung. Schieben Sie den Mauspfeil über das Bild, dann sehen Sie eine beschriftete Version.

Credit und Bildrechte: Steve Cullen (lightbuckets.com)

Beschreibung: Was passiert mit Materie, die in ein aktives Schwarzes Loch fällt? Im Fall von Cygnus X-1 gelangt wahrscheinlich nur ein kleiner Teil dieser Materie hinein. Einfallendes Gas kollidiert nicht nur mit sich selbst, sondern mit einer Akkretionsscheibe aus wirbelnder Materie, die das schwarze Loch umgibt.

Das Ergebnis könnte ein Mikroquasar sein, der im gesamten elektromagnetischen Spektrum leuchtet und mächtige Strahlen erzeugt, die einen Großteil der einfallenden Materie fast mit Lichtgeschwindigkeit in den Kosmos zurückwirft, ehe sie sich dem Ereignishorizont des schwarzen Lochs auch nur nähern kann.

Die Bestätigung, dass die Jets schwarzer Löcher Hüllen erzeugen können, welche sich ausdehnen, erfolgte kürzlich durch die Entdeckung von Hüllen um Cygnus X-1. Rechts oben ist eine solche Hülle abgebildet, die sehr wahrscheinlich durch den Jet des Mikroquasars und Kandidaten für ein schwarzes Loch Cygnus X-1 erzeugt wurde. Wenn Sie den Mauspfeil über das Bild bewegen, sehen Sie eine kommentierte Ansicht. Der physikalische Prozess, der die Jets des Schwarzen Lochs erzeugt, wird weiterhin erforscht.

Zur Originalseite

Aussicht nahe einem schwarzen Loch

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: April Hobart, CXC

Beschreibung: Im Zentrum eines wirbelnden Strudels heißen Gases sitzt wahrscheinlich eine Bestie, die nie direkt beobachtet wurde: ein schwarzes Loch. Untersuchungen des hellen Lichts, das von dem wirbelnden Gas ausgestrahlt wird, weisen häufig nicht nur auf das Vorhandensein eines schwarzen Loches hin, sondern auch auf seine wahrscheinlichen Eigenschaften. Das Gas in der Umgebung von GRO J1655-40 weist zum Beispiel ein ungewöhnliches Flackern mit einer Frequenz von 450 Mal pro Sekunde auf. Angesichts einer früheren Massenabschätzung für das zentrale Objekt von sieben Sonnenmassen kann das schnelle Flackern durch ein schwarzes Loch erklärt werden, das rasend schnell rotiert. Welche physischen Mechanismen das Flackern – und eine langsamere quasi-periodische Schwingung – in Akkretionsscheiben, welche schwarze Löcher und Neutronensterne umgeben, verursachen, bleibt Gegenstand umfangreicher Forschungen.

Zur Originalseite

Cygnus X-1

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit und Bildrechte: ESA, Hubble

Beschreibung: Ist das ein Schwarzes Loch? Gut möglich. Das Doppelsternsystem Cygnus X-1 enthält einen der besten Kandidaten für ein solch exotisches Objekt. Es ist eine der hellsten Röntgenquellen am Himmel und wurde daher schon früh entdeckt, als die ersten Röntgenteleskope den Himmel nach dieser Strahlung absuchten. Der Name sagt es: Cygnus X-1 ist die hellste Röntgenquelle im Sternbild Schwan (Cygnus). Die Beobachtungsdaten lassen auf ein massives Objekt mit dem Neunfachen der Sonnenmasse schließen, das seine Helligkeit kontinuierlich auf verschiedensten Zeitskalen ändert, bis hinunter in den Millisekundenbereich. Damit kann es sich eigentlich nur um ein Schwarzes Loch handeln – kein anderes Modell vermag diese Daten zu erklären. Das Bild zeigt eine künstlerische Darstellung des Cygnus X-1-Systems. Links erkennt man den Stern HDE 226868, dessen Masse etwa das 30fache der Masse unserer Sonne entspricht. Die Röntgenquelle ist auf der rechten Seite dargestellt. Sie ist mit dem Riesenstern über eine Materiebrücke verbunden, über die Masse vom Stern in eine Akkretionsscheibe überströmt, die das Schwarze Loch umgibt. Der Stern des Systems ist schon mit einem kleinen Teleskop zu sehen. Seltsamerweise scheint Cygnus X-1 ohne eine vorangegangene Supernovaexplosion entstanden zu sein.

Zur Originalseite