Pluto in Echtfarben

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JHU APL, SwRI, Alex Parker

Beschreibung: Welche Farbe hat Pluto wirklich? Es kostete einige Mühe, das herauszufinden. Trotz der vielen Bilder, die zur Erde geschickt wurden, als die Roboter-Raumsonde New Horizons 2015 an Pluto vorbeiraste, war es schwierig, diese Multispektralbilder ungefähr so zu bearbeiten, wie ein menschliches Auge sie sehen würde. Das Ergebnis sieht man hier, es wurde drei Jahre nach Erfassung der Rohdaten durch New Horizons veröffentlicht und ist das höchstaufgelöste Echtfarbbild von Pluto, das je erstellt wurde.

Das Bild zeigt die helle herzförmige Tombaugh Regio mit der unerwartet glatten Sputnik Planitia aus gefrorenem Stickstoff, die ihren Westlappen füllt. New Horizons fand heraus, dass die Oberfläche des Zwergplaneten überraschend komplex ist und aus vielen Regionen besteht, mit merklich unterschiedlichen Farbtönen. Insgesamt ist Pluto jedoch vorwiegend braun, ein Großteil seiner gedämpften Farben stammen von kleinen Mengen Oberflächenmethan, das vom Ultraviolettlicht  der Sonne angeregt wird.

Zur Originalseite

Der ungewöhnliche Berg Ahuna Mons auf Ceres

Mitten im Bild ragt der rätselhafte Berg Ahuna Mons auf. Er befindet sich auf dem Zwergplaneten Ceres. Vielleicht entstand er aus einer Schlammblase, die aus dem Inneren aufstieg.

Bildcredit: Mission Dawn, NASA, JPL-Caltech, UCLA, MPS/DLR/IDA

Wie entstand dieser ungewöhnliche Berg? Dazu gibt es eine neue Theorie. Ahuna Mons ist der größte Berg auf dem Zwergplaneten Ceres, dem größten bekannte Asteroiden im Sonnensystem. Ceres umkreist die Sonne im Hauptasteroidengürtel zwischen Mars und Jupiter. Ahuna Mons ist anders als alles, was wir bisher gesehen haben. Vor allem sind die Hänge frei von alten Kratern, aber sie sind voller junger, senkrechter Schlieren.

Die neue Hypothese basiert auf zahlreichen Messungen der Gravitation. Sie besagt, dass eine Schlammblase mit reichlich reflektierendem Salz aus der Tiefe des Zwergplaneten an einem Schwachpunkt aufstieg. Sie drang durch die eisige Oberfläche und erstarrte dann. Die hellen Streifen sind vermutlich ähnlich wie das Material, das in jüngster Zeit an der Oberfläche auftauchte. Man sieht es zum Beispiel an Ceres‘ berühmten hellen Flecken.

Bei diesem Digitalbild wurde die Höhe verdoppelt. Es entstand aus Karten der Oberfläche, welche die robotische Mission Dawn 2016 von Ceres erstellte. Dawn beendete ihre erfolgreiche Mission 2018. Die Sonde umkreist Ceres weiterhin, doch ihr fehlt inzwischen der Treibstoff, um ihre Antennen zur Erde zu richten.

Zur Originalseite

Cerealia Facula

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, UCLA, MPS/DLR/IDA

Beschreibung: Cerealia Facula, auch bekannt als der hellste Fleck auf Ceres, ist auf dieser atemberaubenden Mosaik-Nahaufnahme abgebildet. Die hoch aufgelösten Bilddaten nahm die Raumsonde Dawn in einer Umlaufbahn auf, in der geringen Höhe von nur 34 Kilometern über der Oberfläche des Zwergplaneten.

Cerealia Facula ist etwa 15 Kilometer groß und befindet sich im Zentrum des 90 Kilometer großen Kraters Occator. Wie die anderen hellen Flecken (faculae), die auf Ceres verteilt sind, ist Cerealia Facula kein Eis, sondern ein freigelegter salziger Rückstand mit einem Reflexionsvermögen von schmutzigem Schnee. Vermutlich besteht der Rückstand großteils aus Natriumkarbonat und Ammoniumchlorid aus einer matschigen Sole in oder unter der Kruste des Zwergplaneten.

Dawn verwendet auf ihrer 11-jährigen Mission ein fortschrittliches Ionentriebwerk. Sie erforschte den Hauptgürtelasteroiden Vesta, ehe sie zu Ceres weiterreiste. Irgendwann zwischen August und Oktober dieses Jahres geht der interplanetaren Raumsonde voraussichtlich der Treibstoff für ihre Hydrazintriebwerke aus, in Folge verliert sie die Kontrolle über ihre Ausrichtung und damit die Energie und die Möglichkeit, mit der Erde zu kommunizieren. Bis dahin erforscht Dawn weiterhin Ceres so detailreich wie nie zuvor und setzt sich schlussendlich in ihrem Orbit um die kleine Welt zur Ruhe.

Zur Originalseite

Haumea im äußeren Sonnensystem

Die unregelmäßig geformte Haumea ist von Kratern übersät und hat einen Ring.

Illustrationscredit: Andalusisches Institut für Astrophysik

Hier ist eines der seltsamsten Objekte im äußeren Sonnensystem. Bei diesem wurde kürzlich ein Ring entdeckt. Das Objekt hat die Bezeichnung Haumea. Es ist der fünfte anerkannte Zwergplanet nach Pluto, Ceres, Eris und Makemake. Haumea hat eine längliche Form, was ziemlich ungewöhnlich ist. In einer Dimension ist Haumea deutlich länger als Pluto, in der zweiten ist sie ähnlich groß wie Pluto und in der dritten viel kleiner. Haumeas Bahn läuft manchmal näher an der Sonne als Pluto. Doch meist ist die ungewöhnliche Haumea weiter entfernt.

Oben visualisierte ein Künstler Haumea als ein Ellipsoid, das mit Kratern übersät ist. Es ist von einem einheitlichen Ring umgeben. Haumea wurde 2003 entdeckt. Sie erhielt die vorläufige Bezeichnung 2003 EL61. 2008 benannte die IAU sie nach einer hawaiianischen Göttin. Neben dem dieses Jahr entdeckten Ring besitzt Haumea zwei kleine Monde – die 2005 entdeckten und nach den Töchtern der Gottheit benannten Hi’iaka und Namaka.

Zur Originalseite

Der ungewöhnliche Berg Ahuna Mons auf Ceres

Mitten im Bild ragt der Berg Ahuna Mons auf. Er steht auf dem Zwergplaneten Ceres.

Bildcredit: Mission Dawn, NASA, JPL-Caltech, UCLA, MPS/DLR/IDA

Wie entstand dieser ungewöhnliche Berg? Ahuna Mons ist der größte Berg auf dem Zwergplaneten Ceres. Sie ist der größte bekannte Asteroid in unserem Sonnensystem und umkreist unsere Sonne im Hauptasteroidengürtel zwischen Mars und Jupiter.

Ahuna Mons ist anders als alles, was wir je zuvor gesehen haben. Vor allem sind ihre Hänge nicht von alten Kratern bedeckt, sondern mit jungen, senkrechten Streifen. Eine Hypothese besagt, dass Ahuna Mons ein Eisvulkan ist. Er entstand kurz nach einem großen Einschlag auf der gegenüberliegenden Seite des Zwergplaneten. Der Einschlag könnte das Gelände durch gebündelte Erdbebenwellen gelockert haben.

Die hellen Streifen enthalten wohl viel reflektierendes Salz. Sie sind vielleicht ähnlich zusammengesetzt wie die Materialien, die man vor kurzer Zeit in den berühmten hellen Flecken von Ceres fand.

Das Digitalbild ist doppelt überhöht. Es entstand aus Oberflächenkarten der Robotermission Dawn von Ceres vom letzten Jahr.

Offene Wissenschaft: Stöbert in +1500 Codes der Quelltextbibliothek für Astrophysik

Zur Originalseite

Plutos geriffeltes Gelände

Pluto ragt von links ins Bild. Auf der rechten Seite beim Rand des Himmelskörpers wirkt seine Oberfläche pelzig. Dort sind Regionen mit riesigen klingenartigen
 Strukturen.

Bildcredit: NASA, Johns Hopkins Univ./APL, Southwest Research Institute

Diese Nahaufnahme zeigt eine ferne Welt. Es ist geriffeltes Gelände auf Pluto. Die Raumsonde New Horizons bildete es im Juli 2015 bei ihrem Vorbeiflug ab. Die seltsame Struktur entdeckte man in hoch gelegenen Regionen nahe bei Plutos Äquator. Sie gehört zu Feldern aus zerklüfteten Formen auf der Oberfläche, die so hoch sind wie Wolkenkratzer. Sie bestehen fast ganz aus Methaneis.

Die riesigen Grate sind wie Klingen geformt und werfen dramatische Schatten. Anscheinend entstanden sie durch Sublimation. Bei diesem Prozess geht während Plutos wärmeren geologischen Perioden kondensiertes Methaneis direkt in Methangas über, ohne eine flüssige Phase dazwischen. Auch auf der Erde können Felder aus messerartigen Eisscheiben durch Sublimation entstehen. Man findet sie in den Hochplateaus der Anden. Die geriffelten Strukturen sind als Büßereis bekannt. Sie bestehen aus Wassereis und sind höchstens ein paar Meter hoch.

Zur Originalseite

New Horizons: Flug über Pluto

Credit: NASA, JHUAPL, SwRI, P. Schenk und J. Blackwell (LPI); Musik: Open Sea Morning von Puddle of Infinity

Was sieht man bei einem Flug über Pluto? Die Raumsonde New Horizons flog im Juli 2015 über die ferne Welt. Ihre Geschwindigkeit betrug ungefähr 80.000 km/h. Kürzlich wurden viele Bilder des spektakulären Vorbeiflugs digital und farbverstärkt. Dann kombinierte man sie zu diesem zwei Minuten langen Zeitraffervideo.

Zu Beginn des Films dämmert das Licht auf Bergen. Sie bestehen vermutlich aus Wassereis, das von gefrorenem Stickstoff gefärbt ist. Bald sehen wir rechts ein flaches Meer, das großteils aus festem Stickstoff besteht. Es ist in seltsame Vielecke gegliedert. Daher vermutet man, dass sie aus einem vergleichsweise warmen Inneren hochgekocht sind. Die Krater und Eisberge unten sind ein vertrauter Anblick. Das Video wird trübe und endet über einem Gelände, das man als schartig bezeichnen könnte. Auf diesem Gelände ragen 500 Meter hohe Grate auf, die durch kilometergroße Lücken getrennt sind.

Die Roboter-Raumsonde New Horizons hat zu viel Schwung, um je zu Pluto zurückzukehren. Doch sie wird nun zum Kuipergürtelobjekt 2014 MU 69 gelenkt. Am Neujahrstag 2019 schießt sie daran vorbei.

Zur Originalseite

Sputnik Planitia auf Pluto

Obenauf liegt die beigefarbene Ebene Sputnik Planitia. Sie ist ungewöhnlich glatt ohne Krater und zeigt Spuren von Konvektionszellen.

Bildcredit: NASA, Johns Hopkins U./APL, Southwest Research Inst.

Gibt es auf Pluto einen Ozean unter Sputnik Planitia? Das Bild stammt von New Horizons. Die ungewöhnlich glatte, goldene Fläche ist 1000 Kilometer groß. Sie ist anscheinend in Konvektionszellen unterteilt. Wie entstand diese Region? Die Antwort einer Hypothese lautet: Sie entstand durch einen großen Einschlag. Dieser wirbelte einen etwa 100 km tiefen Ozean aus Salzwasser unter der Oberfläche durch.

Das Bild zeigt Sputnik Planitia. Die Ebene ist Teil der größeren, herzförmigen Tombaugh Regio. Das Bild vom letzten Juli zeigt echte Details in verstärkten Farben. Inzwischen ist die Roboter-Raumsonde New Horizons auf dem Weg zu neuen Abenteuern. Die überraschenden Merkmale auf Plutos Oberfläche werden mit Computern modelliert. Das führt wahrscheinlich zu einer genaueren Vermutung, was darunter liegt.

Zur Originalseite