Der Schneesturm 1938 von Upper Michigan

Der obere Teil einer Stomleitung ist fast zur Gänze von Schnee bedeckt.

Bildcredit: Bill Brinkman; Danksagung: Paula Rocco

Ja, aber kann man das auch während Blizzard (ein starker Schneesturm) machen? Während des Jahrhundertsturms 1938 erreichten manche Schneewehen auf der Oberen Halbinsel von Michigan die Höhe der Telefonleitungsmasten.

Fast ein Meter Neuschnee fiel überraschend im Zeitraum von zwei Tagen in einem Sturm, der diese Woche vor 86 Jahren startete. Während der Schnee fiel und Orkanböen den Schnee zu surrealen Höhen auftürmten, waren viele Straßen nicht nur unpassierbar, sondern es war auch unmöglich, sie zu räumen. Leute strandeten, Autos, Schulbusse und Züge blieben im Schnee stecken und es brach sogar ein gefährliches Feuer aus. Glücklicherweise sind nur zwei Menschen gestorben, obwohl z.B. manche Schüler gezwungen waren, mehrere aufeinanderfolgende Tage die Schule nicht zu verlassen.

Das oben gezeigte Bild ist von einem Anwohner kurz nach dem Sturm aufgenommen worden. Obwohl der ganze Schnee schließlich geschmolzen ist, tragen wiederholte Schneestürmw wie dieser dazu bei, permanente Gletscher in eisigen Regionen unseres Planeten Erde zu bilden.

Zur Originalseite

Jupiter: 2 Stunden und 30 Minuten

Von links unten nach rechts oben sind 9 Einzelbilder des Jupiter angeordnet, auf denen man seine Veränderung im Laufe von 2,5 Stunden sieht.

Bildcredit und Lizenz: Aurélien Genin

Jupiter ist der Gasriese, der unser Sonnensystem regiert. Er ist auch der Planet, der sich am schnellsten dreht. Er rotiert in weniger als 10 Stunden einmal um seine Achse. Allerdings dreht sich der Gasriese nicht wie ein fester Körper. Ein Tag auf Jupiter dauert an den Polen etwa 9 Stunden und 56 Minuten. Nahe beim Äquator verringert sich die Dauer eines Tages auf 9 Stunden und 50 Minuten. Durch die schnelle Rotation des Riesenplaneten entstehen starke Strahlströmungen. Diese teilen seine Wolken in Bänder aus dunklen Gürteln und hellen Zonen auf, die um den ganzen Planeten reichen.

Diese scharfe Bildfolge entstand in der Nacht des 15. Januar mit einer Kamera und einem kleinen Teleskop in der Nähe von Paris. Jupiters schnelle Rotation ist gut erkennbar. Sein riesiges Sturmsystem, der große Rote Fleck, liegt südlich vom Äquator. Er bewegt sich mit der Rotation des Planeten von links nach rechts. Die Bildfolge verläuft von links unten nach rechts oben. Sie dauerte etwa 2 Stunden und 30 Minuten.

Zur Originalseite

Ein Windhosen-Tornado über Kansas

Über einem dunklen Horizont schwebt eine dunkle, trichterförmige Landhose, die eine zweite dünnere Windhose enthält. Am blauen Himmel dahinter schweben einige Wolken.

Bildcredit und Bildrechte: Brad Hannon

Bei dem abgebildeten Tornado handelt es sich um eine sogenannte Landhose bzw. Windhose – eine ungewöhnliche Tornadoart, die gelegentlich am Rande eines heftigen Gewitters auftritt. Das Foto dieser Windhose wurde im Juni 2019 in Kansas, USA, von einem erfahrenen Sturmjäger aufgenommen und identifiziert. Der eigentliche Tornado befindet sich in der Mitte, und der äußere Mantel wurde wahrscheinlich durch den vom Tornado aufgewirbelten Staub erzeugt.

Bislang ist die Erde der einzige Planet von dem man weiß, dass er Tornados erzeugt, allerdings wurden auch auf der Sonne Tornado-ähnliche Aktivitäten beobachtet und Staubteufeltreten auf dem Mars sogar recht häufig auf.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Stereo-Jupiter nahe der Opposition

Das Bild zeigt zwei Abbildungen von Jupiter mit bandförmigen Wolkengürteln und dem großen Roten Fleck. Durch Schielen wirkt das Bild dreidimensional.

Bildcredit und Bildrechte: Marco Lorenzi

Jupiter sieht auf diesen Bildern gestochen scharf aus. Beide wurden am 17. November von Singapur aus mit einem Dachteleskop aufgenommen, nur zwei Wochen nach Jupiters Opposition im Jahr 2023. Der Riesenplanet ist derzeit fast die ganze Nacht hindurch zu sehen und steht um Mitternacht besonders hoch im Süden. Sein Licht war zum Zeitpunkt der Aufnahmen nur 33,4 Minuten zur Erde unterwegs, das sind ca. 4 Astronomische Einheiten oder etwas mehr als 600 Millionen Kilometer.

Die dunklen Gürtel und hellen Zonen des Planeten Jupiter sind in bemerkenswerter Detailtreue zu erkennen, ebenso wie die weißlichen, ovalen Wirbel des Riesenplaneten. Sein charakteristischer Großer Roter Fleck ist im Süden immer noch deutlich zu erkennen.

Jupiter dreht sich alle 10 Stunden schnell um seine Achse, so dass diese Bilder auf der Grundlage von Videobildern, die nur 30 Minuten auseinander liegen, ein Stereobild ergeben. Schaue auf die Mitte des Paares und stelle die Augen auf „Unendlich“ ein, bis sich die einzelnen Bilder überlagern und verschmelzen, um den größten Gasriesen des Sonnensystems in 3D-Optik zu sehen.

Zur Originalseite

Ein Staubteufel auf dem Mars wirbelt vorbei

Videocredit: NASA, JPL-Caltech, Rober Perseverance; AI-Bearbeitung: PipploIMP

Es bewegte sich über die Marsoberfläche – was war es? Ein Staubteufel. Solche rotierenden Säulen, in denen Luft aufsteigt, werden von der warmen Oberfläche aufgeheizt. Sie kommen auch in warmen, trockenen Gebieten auf dem Planeten Erde vor.

Staubteufel bestehen in der Regel nur wenige Minuten. Man sieht sie, wenn sie losen, rötlichen Staub mitreißen und der dunklere, schwerere Sand darunter zurückbleibt. Staubteufel sehen nicht nur interessant aus, sie können auch sichtbare Spuren zurücklassen. Manchmal sind sie für unerwartete Säuberungen der Oberflächen von Solarpaneelen verantwortlich.

Die Bilder in diesem Video wurden von einer KI interpoliert. Aufgenommen wurden sie sie Anfang August vom Rover Perseverance, der gerade im Krater Jezero nach Anzeichen für urzeitliches Leben sucht. Das sechssekündige Zeitraffervideo dauert in Echtzeit etwas länger als einer Minute. In der Ferne seht ihr den rotierenden Staubteufel. Er bewegt sich mit etwa 20 km/h und reicht ungefähr 2 Kilometer aufwärts.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995, deutsch ab 2007)

Zur Originalseite

Böenwalze über Wisconsin

Hinter dunklen Häuserfassaden baut sich am wolkenbedeckten Himmel eine bedrohlich wirkende Wolkenwalze auf.

Bildcredit: Megan Hanrahan (Pierre cb), Wikipedia

Welche Art Wolke ist das? Es ist eine Arcuswolke, eine sogenannte Böenwalze. Diese seltenen langen Wolken können in der Nähe einer vorrückenden Kaltfront entstehen. Der Fallwind einer näherrückenden Sturmfront kann dazu führen, dass feuchte, warme Luft aufsteigt, unter ihren Taupunkt abkühlt und so eine Wolke bildet. Wenn das gleichmäßig entlang einer ausgedehnten Front passiert, kann eine Rollwolke entstehen.

In einer Rollwolke kann die Luft entlang der langen waagrechten Achse der Wolke zirkulieren. Man geht davon aus, dass sich eine Böenwalze nicht in einen Wirbelsturm verwandeln kann. Anders als eine Shelf-Wolke ist eine Rollwolke vollständig von ihrer Herkunfts-Gewitterwolke losgelöst.

Hier seht ihr eine weit in die Ferne reichende Böenwalze, die entstand, als sich 2007 in Racine im US-amerikanischen Wisconsin ein Sturm näherte.

Zur Originalseite

Akatsuki zeigt die Venus in Ultraviolett

Die bildfüllend dargestellte Venus ist zu drei Vierteln beleuchtet und zeigt deutliche Wolkenstrukturen.

Bildcredit und Bildrechte: JAXA, Planet-C Projekt-Team; h/t: Mehmet Hakan Özsaraç

Warum unterscheidet sich die Venus so sehr von der Erde? Um das herauszufinden, startete Japan die Roboter-Raumsonde Akatsuki, die Ende 2015 nach einem ungeplanten fünfjährigen Abenteuer im inneren Sonnensystem in einen Orbit um die Venus eintrat. Obwohl Akatsuki schon ihre geplante Funktionsdauer bereits überschritten hatte, funktionierten Raumsonde und Instrumente so gut, dass ein Großteil ihrer ursprünglichen Mission wieder aufgenommen wurde.

Akatsuki ist auch als Venus Climate Orbiter bekannt. Ihre Instrumente untersuchten Unbekanntes über den Schwesterplaneten der Erde, zum Beispiel, ob es noch aktive Vulkane gibt, ob in der dichten Atmosphäre Blitze entstehen und warum die Windgeschwindigkeiten viel höher sind als die Rotationsgeschwindigkeit des Planeten.

Dieses Bild wurde mit Akatsukis UVI-Kamera in drei Ultraviolettfarben aufgenommen. Auf der Tagseite der Venus ist das planetenweite, V-förmige Wolkenmuster zu sehen. In der relativ hohen Konzentration an Schwefeldioxid ist ein geringeres Vorkommen in zartem Blau angedeutet. Die Auswertung der Akatsuki-Bilder und Daten zeigte unter anderem, dass die Venus Äquatorströme besitzt, ähnlich den Westwindströmen der Erde.

Zur Originalseite

Blitze auf Jupiter

Mitten im Bild ist eine runde Wolkenstruktur erkennbar, auf 12 Uhr leuchtet ein kleines Licht.

Bildcredit: NASA/JPL-Caltech/SwRI/MSSS; Bearbeitung und Lizenz: Kevin M. Gill

Kommen Blitze nur auf der Erde vor? Nein. Raumsonden in unserem Sonnensystem entdeckten Blitze auf den Planeten Mars, Jupiter und Saturn. Wahrscheinlich gibt es auch auf der Venus, Uranus und Neptun Blitze.

Blitze sind ein plötzlicher Schub elektrisch geladener Teilchen von einem Ort zu einem anderen. Auf der Erde führen Ströme kollidierender Eis- und Wassertröpfchen zu einer Ladungstrennung, die Blitze hervorruft. Doch was passiert auf Jupiter? Bilder und Daten der NASA-Raumsonde Juno im Jupiter-Orbit untermauern frühere Vermutungen, dass auch auf Jupiter Blitze in Wolken entstehen, die Wasser und Eis enthalten.

Dieses Bild von Juno zeigt einen optischen Blitz in einem großen Wolkenwirbel in der Nähe von Jupiters Nordpol. In den nächsten Monaten fliegt Juno mehrmals dicht an Jupiters Nachtseite vorbei. Dabei erhält die Robotersonde wahrscheinlich weitere Daten und Bilder von Blitzen auf Jupiter.

Zur Originalseite