Der symbiotische Stern R Aquarii

Mitten im Bild leuchtet ein Stern, der von leuchtenden Spuren einer Explosion umgeben ist. Die Fasern der Explosion sind braun und teils lila gefärbt.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Der veränderliche Stern R Aquarii ist ein Doppelsternsystem, das wechselwirkt. Es besteht aus zwei Sternen, die offenbar in enger symbiotischer Beziehung stehen. Schon mit einem Fernglas sieht man im Laufe eines Jahres, wie sich seine Helligkeit verändert. Das faszinierende System ist etwa 710 Lichtjahre entfernt. Es besteht aus einem kühlen Roten Riesenstern und einem heißen, dichten Weißen Zwergstern. Die beiden kreisen auf ihren Bahnen um ein gemeinsames Massezentrum.

Das sichtbare Licht des Doppelsterns stammt großteils vom Roten Riesen. Er ist ein veränderlicher Mira-Stern mit langer Periode. Der kleine, dichte Weiße Zwerg zog mit seiner Gravitation Materie aus der weiten Hülle des kühlen Riesensterns auf seine Oberfläche. Das löste eine thermonukleare Explosion, bei der Materie in den Raum geschleudert wurde.

Dieses Bild stammt vom Weltraumteleskop Hubble. Es zeigt den Trümmerring, der sich immer noch ausdehnt. Er ist etwas kleiner als ein Lichtjahr und entstand bei einer Explosion, die man Anfang der 1770er-Jahre beobachten konnte. Die Entwicklung dynamischer Ereignisse, bei denen die energiereiche Strahlung im System R Aquarii entsteht, verstehen wir weniger gut. Sie werden seit dem Jahr 2000 in den Daten des Röntgen-Observatoriums Chandra beobachtet.

Zur Originalseite

Viele Singularitäten im Galaktischen Zentrum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC / Columbia Univ./ C. Hailey et al.

Beschreibung: Eine kürzlich durchgeführte informelle Studie ergab, dass Astronomen noch keinen guten Sammelbegriff für Gruppen Schwarzer Löcher haben. Doch sie brauchen einen.

Die roten Kreise auf diesem Bild des Röntgenobservatoriums Chandra kennzeichnen eine Gruppe mit einem Dutzend Schwarzer Löcher in Doppelsternsystemen. Sie besitzen etwa 5 bis 30 Sonnenmassen und schwärmen in einem Umkreis von ungefähr 3 Lichtjahre um das Zentrum unserer Galaxis mit einem sehr massereiche Schwarzen Loch, das als Sagittarius A* (Sgr A*) bezeichnet wird. Gelbe Kreise kennzeichnen Röntgenquellen, die wahrscheinlich weniger massereiche Neutronensterne oder weiße Zwergsterne in Doppelsternsystemen sind.

Einzelne Schwarze Löcher wären unsichtbar, doch in Doppelsternsystemen sammeln sie Materie von ihrem normalen Begleitstern und erzeugen Röntgenstrahlung. In der Entfernung des galaktischen Zentrums kann Chandra nur die helleren dieser Doppelsysteme mit Schwarzen Löchern als punktförmige Röntgenquellen erkennen – ein Hinweis, dass es dort Hunderte schwächerer Doppelsysteme mit Schwarzen Löchern geben müsste, die noch nicht entdeckt wurden.

Zur Originalseite

NGC 1360: Das Ei einer Wanderdrossel

Ein blaues, nebeliges Ei schwebt im dunklen Raum, umgeben von sehr wenigen Sternen. In der Mitte des eiförmigen Nebels leuchtet ein heller Stern.

Bildcredit und Bildrechte: Josep Drudis, Don Goldman

Diese hübsche kosmische Wolke ist etwa 1500 Lichtjahre entfernt. Form und Farbe erinnern an das Ei einer Wanderdrossel. Der Nebel ist ungefähr 3 Lichtjahre groß. Er liegt im südlichen Sternbild Chemischer Ofen. Der planetarische Nebel zeigt jedoch keinen Anfang, sondern eine kurze Schlussphase in der Entwicklung eines alternden Sterns.

Das Teleskopbild zeigt den Zentralstern von NGC 1360. Er ist ein Doppelstern. Vermutlich besteht er aus zwei Weißen Zwergen mit weniger Masse, als die Sonne besitzt. Sie sind aber viel heißer. Die intensive, unsichtbare UV-Strahlung der Zwergsterne streifte die Elektronen der Atome in dem Gas ab, das sie umgibt. NGC 1360 hat einen überwiegend blaugrünen Farbton. Er entsteht durch die Strahlung, die er bei der Rekombination der Elektronen mit doppelt ionisierten Sauerstoffatomen abgibt.

Zur Originalseite

Ankündigung der Nova Carinae 2018

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: A. Maury und J. Fabrega

Beschreibung: Wie hell wird die Nova Carinae 2018? Die neue Nova wurde erst letzte Woche entdeckt. Novae treten zwar regelmäßig überall im Universum auf, doch diese Nova – katalogisiert als ASASSN-18fv – ist am irdischen Himmel so ungewöhnlich hell, dass sie auf der Südhalbkugel derzeit leicht mit einem Fernglas sichtbar ist.

Die Nova ist mit einem Pfeil markiert und etwa in Richtung des malerischen Carinanebels zu sehen. Eine Nova wird normalerweise durch eine thermonukleare Explosion auf der Oberfläche eines Weißen Zwergsterns ausgelöst, der Materie eines Begleitsterns ansammelt, doch die Details dieses Ausbruchs sind derzeit unbekannt.

Berufs- und Freizeitastronomen werden diesen ungewöhnlichen Sternausbruch im Laufe der nächsten Wochen beobachten, um zu sehen, wie sich die Nova Carinae 2018 entwickelt, und ob sie hell genug für eine Beobachtung mit bloßem Auge wird.

Zur Originalseite

Der Helixnebel von CFHT

Der Helixnebel ist in Falschfarben abgebildet. Sein Inneres schimmert grün, das Auge ist von rosa-violetten Hüllen umgeben. Außen herum leuchten viele Sterne.

Bildcredit: CFHT, Coelum, MegaCam, J.-C. Cuillandre (CFHT) und G. A. Anselmi (Coelum)

Schaut unsere Sonne eines Tages so aus? Der Helixnebel ist einer der hellsten planetarischen Nebel in unserer Nähe. Er ist eine Gaswolke, wie sie am Ende der Existenz eines sonnenähnlichen Sterns entsteht. Die äußeren Hüllen des Sterns werden in den Weltraum getrieben. Aus unserer Perspektive wirkt es, als würden wir in eine Spirale blicken. Der Überrest des zentralen Sternkerns wird zu einem Weißen Zwerg. Er strahlt in einem so energiereichen Licht, dass das Gas, das das zuvor abgestoßen wurde, zu fluoreszieren beginnt.

Der Helixnebel ist als NGC 7293 katalogisiert. Er ist etwa 700 Lichtjahre entfernt und befindet sich im Sternbild Wassermann (Aquarius). Der Nebel ist zirka 2,5 Lichtjahre groß. Die Aufnahme entstand mit dem Canada-France-Hawaii-Teleskop (CFHT). Dieses steht auf einem inaktiven Vulkan auf Hawaii. Eine Nahaufnahme vom inneren Rand des Helixnebels zeigt komplexe Gasknoten. Ihr Ursprung ist unbekannt.

Zur Originalseite

NGC 6369: Der Kleine Geistnebel

Der Kleine Geistnebel NGC 6369 hat eine leicht elliptische Form. In der Mitte leuchtet der Weiße Zwerg, der ihn geschaffen hat. Ein türkisgrüner Ring ist von einem braun-orangefarbigen Rand umgeben.

Bildcredit: Hubble-Vermächtnisteam, NASA

Der spukhafte Nebel NGC 6369 wirkt am Nachthimmel zart. Man kennt ihn als Kleiner Geistnebel. Der Astronom Wilhelm Herschel entdeckte ihn im 18. Jahrhundert, als er mit einem Teleskop das medizinische Sternbild Schlangenträger untersuchte. Herschel klassifizierte den runden Nebel als planetarischen Nebel.

Doch planetarische Nebel haben nichts mit Planeten zu tun. Sie sind vielmehr gasförmige Hüllen, die am Lebensende eines sonnenähnlichen Sterns entstehen. Es sind die äußeren Hüllen des vergehenden Sterns. Sie expandieren in den Weltraum. Der Kern schrumpft währenddessen und wird zu einem Weißen Zwerg. Der umgewandelte weiße Zwergstern leuchtet hier nahe der Mitte. Er strahlt stark in Wellenlängen von Ultraviolettlicht. Dieses liefert die Energie für das Leuchten des expandierenden Nebels.

Das hübsche Bild entstand aus Daten des Weltraumteleskops Hubble. Es zeigt überraschend komplexe Details und Strukturen in NGC 6369. Die vorwiegend runde Struktur des Nebels ist ungefähr ein Lichtjahr groß. Das Leuchten ionisierter Sauerstoff-, Wasserstoff- und Stickstoffatome ist blau, grün und rot gefärbt. Der kleine Geistnebel ist mehr als 2000 Lichtjahre entfernt. Er bietet einen flüchtigen Blick auf die Zukunft unserer Sonne. Vielleicht erzeugt auch sie in etwa 5 Milliarden Jahren einen planetarischen Nebel.

Zur Originalseite

Symbiotischer R Aquarii

Der Doppelstern R Aquarii ist von roten und blauen Nebeln umgeben. Der rote Nebel fällt nach und nach auf den weißen Zwergstern des Systems. Die blauen Nebel strahlen Röntgenlicht ab.

Bildcredit: Röntgen: NASA, CXC, SAO, R. Montez et al.; Optisch: Adam Block, Mt. Lemmon SkyCenter, U. Arizona

Der veränderliche Stern R Aquarii ist mit bloßem Auge sichtbar. Er ist schon lange bekannt. Eigentlich ist er ein wechselwirkendes Doppelsternsystem. Das sind zwei Sterne, die eine enge symbiotische Beziehung haben. R Aquarii ist etwa 710 Lichtjahre entfernt. Er besteht aus einem kühlen, roten Riesenstern und einem heißen, dichten weißen Zwergstern. Beide kreisen um ihren gemeinsamen Schwerpunkt.

Im sichtbaren Licht dominiert der Rote Riese das Binärsystem. Er ist ein langperiodischer veränderlicher Mira-Stern. Doch die Materie in der ausgedehnten Hülle des kühlen Riesensterns wird durch Gravitation auf die Oberfläche des kleineren, dichten Zwergs gezogen. Das löst am Ende eine thermonukleare Explosion aus, bei der Materie in den Raum geschleudert wird. Die optischen Bilddaten in Rot zeigen einen Ring aus Trümmern, der sich ausdehnt. Sie stammen von einer Explosion, die man in den frühen 1770er-Jahren sehen hätte können.

Die energiereiche Strahlung des Systems R-Aquarii stammt von dynamischen Ereignissen, die man weniger gut erklären kann. Seit dem Jahr 2000 wird anhand der Daten des Röntgenobservatoriums Chandra beobachtet, wie sie sich entwickeln. Sie sind blau dargestellt. Das Kompositbild ist in der geschätzten Entfernung von R Aquarii weniger als ein Lichtjahr breit.

Zur Originalseite

Der planetarische Nebel der Roten Spinne

Mitten im Bild ist ein helles Gebilde, von dem spinnenförmige Fortsätze auslaufen.

Bildcredit: NASA, ESA, Hubble, HLA; Überarbeitung und Bildrechte: Jesús M.Vargas und Maritxu Poyal

Was für ein verworrenes Netz ein planetarischer Nebel doch weben kann. Der planetarische Nebel der Roten Spinne hat eine komplexe Struktur. Sie kann entstehen, wenn ein normaler Stern seine äußeren Gashüllen abwirft und ein Weißer Zwergstern wird.

Dieser zweilappige symmetrische planetarische Nebel wird offiziell als NGC 6537 bezeichnet. Er enthält einen der heißesten Weißen Zwerge, die je beobachtet wurden, und war vielleicht Teil eines Doppelsternsystems.

Vom Zentralstern in der Mitte strömen internen Winde aus. Bei ihnen wurden Geschwindigkeiten von mehr als 1000 km/h gemessen. Diese Winde erweitern den Nebel und fließen die Nebelwände entlang. Dadurch kollidieren Wellen aus heißem Gas und Staub. Atome in diesen kollidierenden Erschütterungen strahlen Licht ab. Dieses Licht ist im Bild des Weltraumteleskops Hubble in repräsentativen Farben dargestellt.

Der Nebel der Roten Spinne liegt im Sternbild Schütze (Sagittarius). Seine Entfernung ist nicht genau bekannt, sie wird auf etwa 4000 Lichtjahre geschätzt.

Zur Originalseite