Der Helixnebel von CFHT

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: CFHT, Coelum, MegaCam, J.-C. Cuillandre (CFHT) und G. A. Anselmi (Coelum)

Beschreibung: Sieht unsere Sonne eines Tages so aus? Der Helixnebel ist eines der hellsten und nächstgelegenen Beispiele eines planetarischen Nebels – das ist eine Gaswolke, die am Lebensende eines sonnenähnlichen Sterns entsteht. Die äußeren Gase des Sterns, die in den Weltraum getrieben werden, wirken aus unserer Perspektive, als würden wir in eine Spirale blicken. Der Überrest des zentralen Sternkerns, der ein weißer Zwergstern wird, leuchtet in einem so energiereichen Licht, dass das zuvor abgestoßene Gas zu fluoreszieren beginnt.

Der Helixnebel mit der technischen Bezeichnung NGC 7293 befindet sich etwa 700 Lichtjahre entfernt im Sternbild Wassermann (Aquarius) und ist zirka 2,5 Lichtjahre groß. Dieses Bild wurde mit dem Canada-France-Hawaii-Teleskop (CFHT) fotografiert, das auf einem inaktiven Vulkan auf Hawaii (USA) stationiert ist. Eine Nahaufnahme vom inneren Rand des Helixnebels zeigt komplexe Gasknoten unbekannten Ursprungs.

Zur Originalseite

NGC 6369: Der kleine Geistnebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble Heritage Team, NASA

Beschreibung: Der spukhafte NGC 6369 ist eine zarte Erscheinung am Nachthimmel und allgemein als kleiner Geistnebel bekannt. Er wurde im 18. Jahrhundert vom Astronomen Wilhelm Herschel entdeckt, als er mit einem Teleskop das medizinische Sternbild Schlangenträger untersuchte.

Geschichtlich gesehen klassifizierte Herschel den runden planetenförmigen Nebel als planetarischen Nebel. Doch planetarische Nebel haben nichts mit Planeten zu tun. Sie sind vielmehr gasförmige Hüllen, die am Lebensende eines sonnenähnlichen Sterns entstehen, es sind die äußeren Hüllen des sterbenden Sterns, die in den Weltraum expandieren, während sein Kern schrumpft und zu einem Weißen Zwerg wird. Der umgewandelte weiße Zwergstern ist hier nahe der Mitte zu sehen, er strahlt stark in Ultraviolettwellenlängen und liefert die Energie für das Leuchten des expandierenden Nebels.

Dieses reizende Bild, das aus Daten des Weltraumteleskops Hubble erstellt wurde, zeigt überraschend komplexe Details und Strukturen von NGC 6369. Die vorwiegend runde Struktur des Nebels ist ungefähr ein Lichtjahr groß, das Leuchten ionisierter Sauerstoff-, Wasserstoff- und Stickstoffatome ist blau, grün und rot gefärbt. Der mehr als 2000 Lichtjahre entfernte kleine Geistnebel bietet einen flüchtigen Einblick in das Schicksal unserer Sonne, die vielleicht in etwa 5 Milliarden Jahren ihren eigenen planetarischen Nebel erzeugen.

Zur Originalseite

Symbiotischer R Aquarii

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: NASA, CXC, SAO, R. Montez et al.; Optisch: Adam Block, Mt. Lemmon SkyCenter, U. Arizona

Beschreibung: Der schon lange bekannte, mit bloßem Auge sichtbare veränderliche Stern R Aquarii ist eigentlich ein wechselwirkendes Doppelsternsystem – zwei Sterne, die anscheinend eine enge symbiotische Beziehung haben. Es ist etwa 710 Lichtjahre entfernt und besteht aus einem kühlen, roten Riesenstern und einem heißen, dichten weißen Zwergstern, beide auf einer Bahn um ihr gemeinsames Massenzentrum.

Im sichtbaren Licht des Binärsystems dominiert der Rote Riese, ein langperiodischer veränderlicher Mira-Stern. Doch Materie in der ausgedehnten Hülle des kühlen Riesensterns wird durch Gravitation auf die Oberfläche des kleineren, dichteren Zwergs gezogen, was schlussendlich eine thermonukleare Explosion auslöst und Materie in den Raum sprengt. Optische Bilddaten (rot) zeigen den sich ausdehnenden Ring aus Trümmern, die von einer Explosion stammen, die in den frühen 1770er Jahren zu beobachten gewesen wäre.

Die Entwicklung weniger gut erklärbarer dynamischer Ereignisse, welche energiereiche Emissionen im R-Aquarii-System erzeugen, wurden seit 2000 anhand von Daten des Chandra-Röntgenobservatoriums (blau) beobachtet. Das Kompositsichtfeld ist in der geschätzten Entfernung von R Aquarii weniger als ein Lichtjahr groß.

Zur Originalseite

Der planetarische Nebel der Roten Spinne

Mitten im Bild ist ein helles Gebilde, von dem spinnenförmige Fortsätze auslaufen.

Bildcredit: NASA, ESA, Hubble, HLA; Überarbeitung und Bildrechte: Jesús M.Vargas und Maritxu Poyal

Was für ein verworrenes Netz ein planetarischer Nebel doch weben kann. Der planetarische Nebel der Roten Spinne hat eine komplexe Struktur. Sie kann entstehen, wenn ein normaler Stern seine äußeren Gashüllen abwirft und ein Weißer Zwergstern wird.

Dieser zweilappige symmetrische planetarische Nebel wird offiziell als NGC 6537 bezeichnet. Er enthält einen der heißesten Weißen Zwerge, die je beobachtet wurden, und war vielleicht Teil eines Doppelsternsystems.

Vom Zentralstern in der Mitte strömen internen Winde aus. Bei ihnen wurden Geschwindigkeiten von mehr als 1000 km/h gemessen. Diese Winde erweitern den Nebel und fließen die Nebelwände entlang. Dadurch kollidieren Wellen aus heißem Gas und Staub. Atome in diesen kollidierenden Erschütterungen strahlen Licht ab. Dieses Licht ist im Bild des Weltraumteleskops Hubble in repräsentativen Farben dargestellt.

Der Nebel der Roten Spinne liegt im Sternbild Schütze (Sagittarius). Seine Entfernung ist nicht genau bekannt, sie wird auf etwa 4000 Lichtjahre geschätzt.

Zur Originalseite

Der Flaschenkürbisnebel von Hubble

Im Bild iliegt diagonal eine helle Gaswolke, in der Mitte strömen nach links und rechts weiße Filamente aus, die in einen dunkelgelben Nebel übergehen. An den Enden sind blaue Nebel, im Hintergrund wenige Sterne.

Bildcredit: NASA, ESA, Hubble, MASTBearbeitung: Judy Schmidt

Mit dem Zentralstern im Flaschenkürbisnebel geht es zu Ende. Nun entstehen darin Gaswolken, die sich schnell ausdehnen. Der Kernbrennstoff des einst normalen Sterns geht zur Neige. Daher schrumpft die Zentralregion zu einem Weißen Zwerg. Dabei wird ein Teil der Energie frei. Das führt dazu, dass sich die äußere Hülle des Sterns ausdehnt. In diesem Fall entsteht ein fotogener protoplanetarer Nebel.

Das Gas rammt mit Millionen km/h das umgebende interstellare Gas. Dabei entsteht eine ÜberschallStoßfront. Ionisierter Wasserstoff und Stickstoff beginnen blau zu leuchten. Der vergehende Zentralstern ist von dichtem Gas und Staub verborgen.

Der Flaschenkürbisnebel ist auch als Faules-Ei-Nebel und OH231.8+4.2 bekannt. Er verwandelt sich wahrscheinlich in den nächsten 1000 Jahren in einen vollständigen bipolaren planetarischen Nebel. Dieser Nebel ist etwa 1,4 Lichtjahre lang und 5000 Lichtjahre entfernt. Er befindet sich im Sternbild Achterdeck des Schiffs (Puppis).

Zur Originalseite

IC 4406 – ein scheinbar quadratischer Nebel

Der Nebel im Bild sieht aus wie ein Rechteck. An den langen Rändern leuchtet es gelborange, in der Mitte helltürkis. Es ist von vielen dunklen Staubfasern überzogen.

Bildcredit: C. R. O’Dell (Vanderbilt U.) et al., Hubble-Vermächtnisteam, NASA

Wie kann ein runder Stern einen quadratischen Nebel bilden? Diese Frage stellt sich, wenn man planetarische Nebel wie IC 4406 untersucht. Es gibt Hinweise, dass IC 4406 wahrscheinlich ein hohler Zylinder ist. Seine quadratische Erscheinung ergibt sich durch den Blickwinkel, wenn man den Zylinder von der Seite sieht. Würde man IC 4406 von oben sehen, wäre er so ähnlich wie der Ringnebel.

Dieses Bild in charakteristischen Farben ist ein Komposit. Dafür wurden Bilder des Weltraumteleskops Hubble aus den Jahren 2001 und 2002 kombiniert. Heißes Gas floss aus den Enden des Zylinders, Fasern aus dunklem Staub und molekularem Gas säumen die begrenzenden Wände.

Der Stern, der hauptsächlich für diese interstellare Skulptur verantwortlich ist, befindet sich im Zentrum des planetarischen Nebels. In wenigen Millionen Jahren ist der einzige in IC 4406 sichtbare Überrest der verblassende weiße Zwergstern.

Ö1-Nachtquartier:Das Jahr in den Sternen“ mit Maria Pflug-Hofmayr

Zur Originalseite

Nova über Thailand

Das Bild zeigt die Nova Sagittarius 2016 über dem antiken Wat Mahathat in Sukhothai in Thailand.

Bildcredit und Bildrechte: Jeff Dai (TWAN)

Diese Nova im Schützen ist hell genug, um sie mit einem Fernglas zu sehen. Die Sternexplosion wurde letzten Monat entdeckt. Sie erreichte letzte Woche sogar die Grenze zur Sichtbarkeit mit bloßem Auge. Eine klassische Nova entsteht durch eine thermonukleare Explosion auf der Oberfläche eines weißen Zwergsterns. Das ist ein dichter Stern, der so groß ist wie unsere Erde, aber die Masse unserer Sonne besitzt.

Das Bild zeigt die Nova über dem antiken Wat Mahathat in Sukhothai in Thailand. Es wurde letzte Woche fotografiert. Wenn ihr die Nova Sagittarius 2016 selbst sehen möchtet, geht einfach nach Sonnenuntergang hinaus und sucht das Sternbild Schütze (Sagittarius) am westlichen Horizont. Es wird oft als kultige Teekanne gesehen. Nahe bei der Nova leuchtet auch der sehr helle Planet Venus. Wartet nicht zu lange, weil die Nova verblasst. Außerdem geht dieser Teil des Himmels immer früher unter.

Zur Originalseite

M27 – der Hantelnebel

Der rosarote kugelförmige Nebel im Bild ist ein planetarischer Nebel, es ist der Hantelnebel M27 im Sternbild Fuchs. Außen ist er von fliederfarbenen Nebeln umgeben.

Bildcredit und Bildrechte: John Hayes

Der erste Hinweis, was aus unserer Sonne wird, wurde 1764 versehentlich entdeckt. Damals erstellte Charles Messier eine Liste diffuser Objekte, die nicht mit Kometen verwechselt werden sollten. Das 27. Objekt auf Messiers Liste ist als M27 oder Hantelnebel bekannt. Es ist ein planetarischer Nebel. Einen solchen erzeugt unsere Sonne in ferner Zukunft, wenn die Kernschmelze in ihrem Inneren zur Neige geht.

M27 ist einer der hellsten planetarischen Nebel am Himmel. Mit einem Fernglas sieht man ihn im Sternbild Fuchs (Vulpecula). Licht braucht etwa 1000 Jahre von M27 bis zu uns. Oben ist der Nebel in Farben gezeigt, die von Wasserstoff und Sauerstoff abgestrahlt werden. Die Natur von M27 zu verstehen lag weit jenseits der Physik des 18. Jahrhunderts. Noch heute sind noch viele Dinge an bipolaren planetarischen Nebeln wie M27 rätselhaft. Die gasförmige äußere Hülle hat eine geringe Masse. Welcher physikalische Mechanismus wirft sie aus, sodass ein heißer weißer Röntgen-Zwerg zurückbleibt?

Zur Originalseite