Der rotierende Pulsar im Krebsnebel

Der Krebspulsar ist von weißen, wirbelnden Wolken umgeben. Außen herum sind violette Wolken angeordnet. Das Bild wurde eingefärbt.

Bildcredit: NASA: Röntgen: Chandra (CXC), optisch: Hubble (STScI), Infrarot: Spitzer (JPL-Caltech)

Im Zentrum des Krebsnebels liegt ein magnetischer Neutronenstern von der Größe einer Stadt. Er rotiert 30 Mal pro Sekunde. Das Objekt ist auch als Krebspulsar bekannt. Es ist der helle Fleck im Gaswirbel, der sich im Nebelzentrum befindet. Das spektakuläre Bild ist zwölf Lichtjahre breit. Es zeigt leuchtendes Gas, Höhlungen und wirbelnde Filamente mitten im Krebsnebel.

Das Bild ist aus Aufnahmen in mehreren Wellenlängen zusammengesetzt: Das Weltraumteleskop Hubble fotografiert im sichtbaren Licht (lila), das Röntgenteleskop Chandra im Röntgenbereich (blau) und das Weltraumteleskop Spitzer im infraroten Wellenlängenbereich (rot).

Wie ein kosmischer Dynamo liefert der Krebspulsar die Energie für die Emissionen des Nebels. Er jagt Stoßwellen durch das umgebende Material und beschleunigt Elektronen auf spiralförmigen Bahnen.

Der rotierende Pulsar hat mehr Masse als die Sonne und der Dichte eines Atomkerns. Er ist der kollabierte Kern eines massereichen Sterns, der explodierte. Die äußeren Teile des Krebsnebels sind die Überreste des Gases, aus dem der Stern bestand. Sie dehnen sich aus. Die Supernova-Explosion wurde auf dem Planeten Erde im Jahr 1054 von Menschen bezeugt.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Supernova 2025rbs in NGC 7331

In der Spiralgalaxie NGC 7331 explodierte die Supernova 2025rbs. Sie ist im Bild markiert. Man findet sie nahe beim hellen Zentrum der Galaxie. Auch der Außenrand der Spiralgalaxie ist markiert.

Bildcredit: Ben Godson (Universität von Warwick)

Vor langer Zeit in einer 50 Millionen Lichtjahren entfernten Galaxie, da explodierte ein Stern. Das Licht dieser Supernova wurde bei uns auf der Erde aber erst am 14. Juli zum ersten Mal mit Teleskopen beobachtet. Sie ist derzeit die hellste Supernova am Nachthimmel und wurde von Astronomen Supernova 2025rbs benannt.

2025rbs wurde als Supernova vom Typ Ia erkannt. Diese Supernovae entstehen in Doppelsternsystem, wenn ein Weißer Zwerg Material von seinem Begleitstern aufnimmt. Das endet schließlich mit einer thermonuklearen Explosion. Supernovae vom Typ Ia dienen auch als Standardkerzen, mit denen man Entfernungen im Universum messen kann.

Die Heimatgalaxie von Supernova 2025rbs ist NGC 7331. Sie ist eine helle Spiralgalaxie und im nördlichen Sternbild Pegasus zu finden. NGC 7331 wird auch gerne als Pendant unserer Milchstraße bezeichnet.

Zur Originalseite

Doppelte Explosion einer Supernova

Zwischen lose verteilten Sternen leuchtet ein Ring. Er ist außen orange-braun und glatt, innen blau und wolkig.

Bildcredit: ESO, P. Das et al.; Hintergrundsterne (NASA/Hubble): K. Noll et al.

Können Supernovae zweimal explodieren? Ja, wenn die erste Explosion wie ein Sprengzünder für die zweite wirkt. Dies ist eine der gängigen Hypothesen zur Entstehung des Supernova-Überrests SNR 0509-67.5.

In diesem Doppelsternsystem führt die Gravitation dazu, dass der größere und „fluffigere“ Stern Masse an seinen kleineren, dichteren Begleiter abgibt. Dieser ist ein Weißer Zwerg. Schlussendlich wird die Temperatur an der Oberfläche des Weißen Zwergs so hoch, dass er explodiert und eine Stoßwelle erzeugt, die sich sowohl nach außen als auch nach innen ausbreitet. Das löst eine vollständige Typ-Ia-Supernova nahe dem Zentrum aus.

Aktuelle Aufnahmen des Systems SNR 0509-67.5, wie dieses Bild des Very Large Telescope in Chile, zeigen zwei Hüllen, deren Radien und Zusammensetzungen zu der Hypothese der doppelten Explosion passen.

Das System SNR 0509-67.5 ist auch bekannt für zwei weitere ungelöste Rätsel: Warum wurde seine helle Supernova vor 400 Jahren nicht beobachtet? Und warum ist heute kein sichtbarer Begleitstern mehr vorhanden?

Zur Originalseite

Nova V462 Lupi ist jetzt sichtbar

Durch ein Sternenfeld mit Sternbildern verlaufen die Bänder unserer Milchstraße diagonal von links oben nach rechts unten. Über der Bildmitte ist ein schwacher Punkt, der gelb markiert ist - es ist die Nova V462 LUPI, die letzte Woche mit bloßem Auge zu sehen war. Derzeit erkennt man sie noch mit einem Fernglas.

Bildcredit und Bildrechte: Matipon Tangmatitham (NARIT)

Wenn man weiß, wo man hinschauen muss, kann man die thermonukleare Explosion eines weißen Zwergsterns sehen. Möglicherweise sogar zwei. Solche Explosionen sind als Novae bekannt. Die Detonationen sind derzeit auf der Südhalbkugel der Erde mit bloßem Auge schwach sichtbar – mit einem Fernglas sind sie jedoch leicht zu erkennen.

Die abgebildete Nova Lupi 2025 (V462 Lupi) wurde letzte Woche im südlichen Sternbild Wolf (Lupus) in der Nähe der zentralen Ebene der Milchstraße aufgenommen. Nova Lupi 2025 wurde am 12. Juni entdeckt. Sie erreichte ihre größte Helligkeit ca. eine Woche später.

In ähnlicher Weise wurde am 25. Juni die Nova Velorum 2025 im südlichen Sternbild der Schiffsegel (Vela) entdeckt. Sie erreichte ihren Höhepunkt einige Tage später. Nur alle ein bis zwei Jahre wird irgendwo in unserer Galaxie eine Nova kurzzeitig für das bloße Auge sichtbar. Es ist recht ungewöhnlich, dass zwei Novae gleichzeitig zu sehen sind.

In der Zwischenzeit erwartet die Menschheit noch eine andere Nova: T Coronae Borealis, die am nördlichen Himmel sichtbar werden soll und voraussichtlich noch heller wird.

Zur Originalseite

IC 418: Der Spirographen-Nebel

Der Nebel im Bild ist leicht oval und wirkt, als wäre er mit einem Spielzeug gezeichnet worden. Der äußere Rand ist orange und gelb, innen ist der Nebel lila-violett.

Bildcredit: NASA, ESA und das Hubble-Nachlassteam (STScI/AURA); Danksagung: R. Sahai (JPL) et al.

Was bewirkt die seltsame Struktur von IC 418? Der planetarische Nebel IC 418 wird wegen seiner Ähnlichkeit mit Zeichnungen aus einem zyklischen Zeichengerät auch als Spirographen-Nebel bezeichnet. Er zeigt Muster, die nicht gut verstanden werden. Vielleicht haben sie irgendwas mit den chaotischen Winden zu tun, die von dem veränderlichen Stern ausgehen. Dieser kann seine Helligkeit innerhalb weniger Stunden auf unvorhersehbare Weise ändern.

Andererseits gibt es wissenschaftliche Hinweise, dass IC 418 vor wenigen Jahrmillionen wahrscheinlich ein ähnlich gut verstandener Stern wie die Sonne war. Noch vor wenigen Tausend Jahren war IC 418 ein gewöhnlicher Roter Riesenstern. Seitdem ihm das nukleare Feuer ausging, begann die äußere Hülle allerdings, sich weiter nach außen zu bewegen. So blieb ein heißer Überrest-Kern übrig. Sein Schicksal es ist, zu dem weißen Zwergstern zu werden, den man im Zentrum sieht. Das Licht aus dem inneren Kern regt umliegende Atome im Nebel an und bringt ihn zum Leuchten. IC 418 ist etwa 2000 Lichtjahre entfernt und durchmisst 0,3 Lichtjahre.

Dieses Falschfarbenbild wurde mit dem Weltraumteleskop Hubble aufgenommen. Es enthüllt die ungewöhnlichen Details.

Zur Originalseite

Webb zeigt den planetarischen Nebel NGC 1514

Der planetarische Nebel NGC 1514 im Sternbild Stier ist in Infrarotlicht sanduhrförmig. In der Mitte leuchtet er rot. Zwei Ringe sind anscheinend die Wülste an den Enden eines Zylinders, den wir schräg von oben sehen.

Bildcredit: NASA, ESA, CSA, M. E. Ressler (JPL) et al.; Bearbeitung: Judy Schmidt

Was passiert, wenn einem Stern der Kernbrennstoff ausgeht? Bei Sternen wie unserer Sonne verdichtet sich das Zentrum zu einem Weißen Zwerg. Währenddessen wird die äußere Atmosphäre ins All ausgestoßen. Sie erscheint als planetarischer Nebel.

Die abgestoßene äußere Atmosphäre des planetarischen Nebels NGC 1514 ist anscheinend ein Durcheinander aus Blasen – wenn man sie in sichtbarem Licht betrachtet. Doch diese Ansicht des Weltraumteleskops James Webb in Infrarot erzählt eine andere Geschichte. In diesem Licht hat der Nebel eine ausgeprägte Sanduhrform, die als Zylinder interpretiert wird. Wir blicken entlang der Diagonale darauf.

In der Mitte des Nebels erkennt ihr bei genauem Hinsehen auch einen hellen Zentralstern. Er gehört wahrscheinlich zu einem Doppelsternsystem. Weitere Beobachtungen zeigen vielleicht besser, wie sich dieser Nebel entwickelt und wie die Zentralsterne zusammenwirken, um die Zylinder und Blasen zu erzeugen, die wir sehen.

Springe durchs Universum: APOD-Zufallsgenerator

Zur Originalseite

Der planetarische Nebel Abell 7

Ein kugelförmiger, blau-grauer Nebel leuchtet mitten im Bild. Er ist von roten Sprenkel überzogen und von wenigen Sternen umgeben. Ein bisschen erinnert er an die Iris in einem Auge.

Bildcredit und Bildrechte: Vikas Chander

Der sehr lichtschwache planetarische Nebel Abell 7 ist etwa 1.800 Lichtjahre von uns entfernt. Er befindet sich unter dem Orion im Sternbild Hase (Lepus). Die mit einem Teleskop gemachte Aufnahme zeigt die typische Kugelform. Der Nebel misst ca. 8 Lichtjahre im Durchmesser. Er ist von Sternen der Milchstraße und einigen fernen Hintergrundgalaxien umgeben.

In der kosmischen Wolke sind faszinierende, komplexe Strukturen zu erkennen. Sie wurden durch Langzeitbelichtung und den Einsatz von Schmalbandfiltern verstärkt, welche die Emission von Wasserstoff, Schwefel und Sauerstoff einfangen. Ohne diese Hilfsmittel wäre Abell 7 zu schwach, um mit dem freien Auge gesehen zu werden.

Ein planetarischer Nebel repräsentiert eine sehr kurze Phase in der Entwicklung eines Sterns. Dabei stößt der einst sonnenähnliche Stern im Zentrum des Nebels seine äußeren Hüllen ab. Unsere Sonne wird diese Phase in 5 Milliarden Jahren durchlaufen.

Das Alter von Abell 7 wird auf 20.000 Jahre geschätzt. Doch der Zentralstern, hier als schwacher Weißer Zwerg zu sehen, ist etwa 10 Milliarden Jahre alt.

Zur Originalseite

M27: Der Hantelnebel

Der bekannte Hantelnebel ist in der Bildmitte in orangeroten Farben abgebildet, er wirkt sehr fluffig. Außen ist er von blauen Schalen umgeben.

Bildcredit und Bildrechte: Christopher Stobie

Ist es das, was aus unserer Sonne werden wird? Durchaus möglich. Der erste Hinweis auf die Zukunft unserer Sonne wurde im Jahr 1764 zufällig entdeckt. Damals stellte Charles Messier eine Liste von diffusen Objekten zusammen, die nicht mit Kometen verwechselt werden sollten.

Das 27. Objekt im Messier-Katalog, das heute als M27 oder Dumbbell-Nebel bekannt ist, ist ein planetarischer Nebel, einer der hellsten planetarischen Nebel am Himmel und mit einem Fernglas in Richtung des Sternbilds Füchschen (Vulpecula) sichtbar. Das Licht braucht etwa 1000 Jahre, um von M27 zu uns zu gelangen, hier zu sehen in den Farben von Schwefel (rot), Wasserstoff (grün) und Sauerstoff (blau).

Wir wissen heute, dass unsere Sonne in etwa 6 Milliarden Jahren ihre äußeren Gase in einen planetarischen Nebel wie M27 abgeben wird, während ihr verbleibendes Zentrum zu einem heißen weißen Zwergstern wird, der Röntgenstrahlung aussendet. Die Physik und Bedeutung von M27 zu verstehen, ging jedoch weit über die Wissenschaft des 18. Jahrhunderts hinaus. Auch heute noch ist vieles an den planetarischen Nebeln rätselhaft, unter anderem, wie ihre komplizierten Formen zustande kommen.

Zur Originalseite