Es ist sicher lustig, das Universum zu färben. Wenn euch das Spaß macht, nehmt fürs Erste diese berühmte astronomische Illustration. Ihr selbst oder eure Freunde, Eltern oder Kinder können es ausdrucken oder sogar digital ausmalen.
Was verrät uns UGC 9391 über die Wachstumsrate des Universums? Vielleicht eine ganze Menge. Das Bild zeigt die Galaxie UGC 9391. Sie enthält veränderliche Sterne vom Typ der Cepheiden (sie sind als rote Kreise markiert) und eine aktuelle Supernova vom Typ Ia (beim blauen X).
Die Helligkeit beider Arten von Objekten ist festgelegt. Cepheiden sind oft relativ nahe. Dagegen sind Supernovae meist sehr weit entfernt. Daher ist diese Spiralgalaxie interessant. Sie macht es möglich, die Entfernung von nahen und fernen Bereichen im Universum zu kalibrieren.
Eine aktuelle Untersuchung neuer Daten stützt unverhofft die Vermutung, dass Cepheiden und Supernovae mit dem Universum etwas schneller expandieren, als man nach Messungen der Expansion im frühen Universum erwartet hätte. Die neuen Daten von UGC 9391 stammen von Hubble. Sie wurden mit früheren Hinweisen in ähnlichen Galaxien kombiniert. Das kosmologische Standardmodell beschreibt die Entwicklung im frühen Universum, und es war bisher sehr erfolgreich. Daher sucht man nun eifrig nach Gründen für diese Abweichung.
Es gibt eine Reihe an möglichen Erklärungen. Manche davon sind sensationell, z. B. ungewöhnliche Elemente wie Phantomenergie oder Dunkle Strahlung. Andere sind banal, etwa statistische Zufälle oder Quellen systematischer Irrtümer, die unterschätzt wurden. In Zukunft sind viele Beobachtungen geplant, die das Rätsel lösen sollen.
Der Beginn läuft glatt. Dann verwandeln sich Klumpen aus Materie durch die Gravitation in Galaxien. Die Galaxien bewegen sich sofort aufeinander zu. Bald kondensieren viele davon zu langen Fasern. Andere verschmelzen zu einem großen, heißen Galaxienhaufen. Solche Simulationen untersuchen mögliche Eigenschaften des Universums. Das hilft bei der Entwicklung der Konstruktion des Weltraumteleskops James Webb. Sein Start ist derzeit für Ende 2018 geplant.
Warum gibt es im Universum mehr Materie als Antimaterie? Man wollte diesen Aspekt der Teilchenphysik besser verstehen. Daher starteten Energie-Ministerien von China und den USA das Daya-Bay-Experiment. Unter dickem Gestein stehen die acht Daya-Bay-Detektoren. Sie beobachten Antineutrinos, die von sechs Kernreaktoren in der Nähe ausgesandt werden. Ihr Standort liegt etwa 50 Kilometer nordöstlich von Hongkong in China.
Der Blick mit einer Kamera in einen Detektor von Daya Bay zeigt Photonen-Sensoren. Sie messen das zarte Licht, das entsteht, wenn die Antineutrinos mit Flüssigkeiten im Detektor wechselwirken.
Hubble macht Platz – hier kommt das Weltraumteleskop James Webb. Das JWST soll das neue, mächtigste Teleskop im Weltraum werden. Letzten Monat wurde der vergoldete JWST-Hauptspiegel enthüllt. Er besteht aus 18 Segmenten. Dieses Zeitraffervideo entstand letzte Woche. Dabei wurde der 6,5 Meter große Spiegel in die senkrechte Position geschwenkt.
Der Film dauert 30 Sekunden. NASA-Ingenieure überwachen den Test. Die Beleuchtung im Raum blendet auf der Oberfläche der Spiegel, die stark reflektiert. Die Berylliumspiegel sind mit einem dünnen Goldfilm überzogen, damit sie Infrarotlicht besser reflektieren. Wissenschaftliche Ziele des JWST sind die Vorgänge im frühen Universum und die Eigenschaften von Planeten, die um Sterne in unserer Nähe kreisen.
Weil der Spiegel so groß ist, wird er beim Start gefaltet. Später, wenn alles wie geplant läuft, wird er im Weltraum wieder aufgeklappt. Das JWST ist eine Gemeinschaftsmission der Weltraumagenturen von USA, Europa und Kanada. Der Start ist derzeit für Ende 2018 geplant.
Sie ist zurück. Noch nie zuvor wurde die Beobachtung einer Supernova vorhergesagt. Es war ein einzigartiges astronomisches Ereignis und trat im Feld des Galaxienhaufens MACS J1149.5+2223 auf.
Die meisten hellen Flecken im Bild sind Galaxien im Haufen. Die aktuelle Supernova hat die Bezeichnung Supernova Refsdal. Sie ereignete sich nur einmal im fernen Universum, und zwar weit hinter diesem massereichen Galaxienhaufen. Die Gravitation führt dazu, dass sich der Haufen wie eine massereiche Gravitationslinse verhielt. Er spaltete das Bild der Supernova Refsdal in mehrere helle Bilder auf.
Eines dieser Bilder erreichte die Erde vor etwa zehn Jahren. Es ist wahrscheinlich im oberen roten Kreis dargestellt. Leider wurde es verpasst. Vier weitere helle Bilder erreichten im April ihre größte Helligkeit im unteren roten Kreis. Sie sind als erste Einsteinkreuz-Supernova um eine massereiche Galaxie im Haufen verteilt.
Doch da war noch mehr. Untersuchungen zeigten, dass wahrscheinlich noch ein sechstes helles Supernovabild auf dem Weg zur Erde war. Es würde wahrscheinlich im nächsten Jahr ankommen.
Anfang des Monats wurde dieses sechste helle Bild geborgen. Es erschien pünktlich im mittleren roten Kreis, wie es vorhergesagt worden war. Wenn wir solche Bildfolgen untersuchen, verstehen wir besser, wie Materie in Galaxien und Galaxienhaufen verteilt ist. Das führt zu neuen Erkenntnissen, wie schnell das Universum expandiert und auf welche Weise massereiche Sterne explodieren.
Diese winzige Kugel liefert Hinweise, dass sich das Universum ewig ausdehnt. Sie ist etwas größer als 1/10 mm und bewegt sich auf eine glatte Platte zu. Das ist die Reaktion auf Energieschwankungen im Vakuum des leeren Raumes. Diese Anziehung wird als Casimir-Effekt bezeichnet. Er ist nach dem Entdecker benannt, der vor etwa 60 Jahren verstehen wollte, warum sich zähe Flüssigkeiten wie Mayonnaise so langsam bewegen.
Vor langer Zeit explodierte an einem fernen Ort ein Stern. Die Supernova 1994D ist der helle Fleck links unten. Sie explodierte am Rand der Galaxie NGC 4526. Die Supernova 1994D war interessant. Der Grund war nicht, dass sie sich stark von anderen Supernovae unterschied, sondern weil sie anderen Supernovae so ähnlich war. Das Licht, das in den Wochen nach der Explosion abgestrahlt wurde, klassifizierte sie als Supernova vom wohlbekannten Typ Ia.
Das Besondere an Typ-1a-Supernovae ist, dass alle dieselbe Leuchtkraft besitzen. Daher ist so eine Supernova umso weiter entfernt, je blasser sie erscheint. Die Beziehung zwischen Helligkeit und Entfernung wird genau kalibriert. So kann man nicht nur die Rate bestimmen, mit der sich das Universum ausdehnt (der Parameter dafür ist die Hubblekonstante), sondern auch die Geometrie des Universums, in dem wir leben (die Parameter dafür sind Omega und Lambda).