Das beobachtbare Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit und Lizenz: Wikipedia, Pablo Carlos Budassi

Beschreibung: Wie weit können Sie sehen? Alles, was Sie jetzt gerade sehen können und könnten, wenn Ihre Augen alle Arten von Strahlung um Sie herum erkennen würden, ist das beobachtbare Universum.

Im elektromagnetischen Spektrum stammt das Fernste, das für uns sichtbar ist, vom kosmischen Mikrowellenhintergrund aus einer Zeit vor 13,8 Milliarden Jahren, als das Universum undurchsichtig wie dicker Nebel war. Einige Neutrinos und Gravitationswellen, die uns umgeben, kommen sogar von noch weiter draußen, doch die Menschheit hat noch keine Technologie, um sie zu erkennen.

Dieses Bild veranschaulicht das beobachtbare Universum in einem zunehmend kompakteren Maßstab mit Erde und Sonne im Zentrum, umgeben von unserem Sonnensystem, nahen Sternen, nahen Galaxien, fernen Galaxien, Fasern aus früher Materie und der kosmischen Hintergrundstrahlung.

Kosmologen gehen üblicherweise davon aus, dass unser beobachtbares Universum nur der nahe Teil eines größeren Ganzen ist, das als „das Universum“ bezeichnet wird, wo die gleiche Physik gilt. Doch es gibt einige Zeilen beliebter, aber spekulativer Überlegungen, die behaupten, unser Universum wäre Teil eines größeren Multiversums, in dem entweder unterschiedliche Naturkonstanten auftreten, andere physikalische Gesetze gelten, höhere Dimensionen wirken oder in denen es leicht abweichende Versionen unseres Standarduniversums gibt.

Zur Originalseite

Galaxienentstehung in einem magnetischen Universum


Bildcredit: IllustrisTNG Projekt; Visualisierung: Mark Vogelsberger (MIT) et al. Musik: Gymnopedie 3 (Komponist: Erik Satie, Musiker: Wahneta Meixsell)

Beschreibung: Wie sind wir hierher gekommen? Wir wissen, dass wir auf einem Planeten leben, der einen Stern umkreist, welcher um eine Galaxie kreist, aber wie ist das alles entstanden?

Um die Details besser zu verstehen, verbesserten Astrophysiker die berühmte IllustrisSimulation zu IllustrisTNG – diese ist nun das komplexeste Computermodell der Entwicklung von Galaxien in unserem Universum. Dieses Video zeigt die Magnetfelder vom frühen Universum (Rotverschiebung 5) bis heute (Rotverschiebung 0). Relativ schwache Magnetfelder sind blau abgebildet, starke sind weiß dargestellt. Diese B-Felder passen sehr gut zu Galaxien und Galaxienhaufen.

Am Beginn der Simulation umkreist eine virtuelle Kamera das virtuelle IllustrisTNG-Universum und zeigt eine 30 Millionen Lichtjahre große junge Region, die ziemlich fadenförmig ist. Durch die Schwerkraft entstehen viele Galaxien und verschmelzen, während sich das Universum ausdehnt und entwickelt. Am Ende stimmt das simulierte IllustrisTNG-Universum statistisch gesehen gut mit unserem gegenwärtigen wirklichen Universum überein, obwohl es einige interessante Unterschiede gibt – zum Beispiel eine Abweichung bei der Energie von Radiowellen, die von schnell bewegten geladenen Teilchen abgestrahlt wird.

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit und Bildrechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Spukt es in unserem Universum? Auf dieser Karte der Dunklen Materie scheint es so. Die Gravitation unsichtbarer Dunkler Materie ist die beste Erklärung dafür, warum Galaxien so schnell rotieren, warum Galaxien so schnell um Haufen kreisen, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie so verteilt ist, wie sie ist – sowohl im lokalen Universum als auch im kosmischen Mikrowellenhintergrund.

Dieses Bild aus der Weltraumschau „Das dunkle Universum“ des Hayden-Planetariums im Amerikanischen Museum für Naturgeschichte zeigt, wie die allgegenwärtige Dunkle Materie in unserem Universum vielleicht spukt. Dieses Bild stammt aus einer detailreichen Computersimulation. Schwarze, komplexe Fasern aus alles durchdringender Dunkler Materie sind hier wie Spinnennweben im Universum verteilt. Die relativ wenigen Klumpen aus bekannter baryonischer Materie sind orange gefärbt.

Diese Simulationen stimmen statistisch gesehen gut mit astronomischen Beobachtungen überein. Etwas unheimlicher ist, dass Dunkle Materie – obwohl sie ziemlich seltsam ist und einer unbekannte Form hat – nicht mehr die seltsamste vermutete Quelle der Gravitation im Universum ist. Diese Ehre hat nun die Dunkle Energie, eine homogenere Quelle abstoßender Gravitation, die anscheinend die Ausdehnung des ganzen Universums bestimmt.

Nicht nur Halloween: Heute ist Tag der Dunklen Materie
Zur Originalseite

Teile das Universum

Bildcredit: NASA, Erwin Schrödingers Katze

Beschreibung: Jetzt - bevor Sie den Knopf drücken - sind zwei künftige Universen möglich. Nachdem Sie den Knopf gedrückt haben, werden Sie in einem von diesen beiden weiterleben. Das ist eine echte Web-Version von Schrödingers berühmtem Katzen-Experiment. Wenn man den roten Knopf auf diesem Astronautenbild kickt, sollte sich das Bild so ändern, dass der gleiche Astronaut eine von zwei Katzen zeigt - eine lebt, die andere ist tot. Der Zeitpunkt Ihres Klicks, kombiniert mit den Schaltungen in Ihrem Gehirn und den Millisekunden Zeitverzögerung Ihres Geräts liefern gemeinsam durch den Zufall der Quantenmechanik ein potenziell vorrangiges Ergebnis.

Manche glauben, dass die von Ihnen ausgelöste Quantenentscheidung das Universum teilt, und dass sowohl das Universum mit lebendiger als auch das mit toter Katze in getrennten Teilen eines größeren Multiversums existieren.

Andere glauben, dass das Ergebnis Ihres Klicks die beiden möglichen Universen zu einem kollabieren lassen - auf eine nicht vorhersehbare Art und Weise.

Wieder andere glauben, dass das Universum klassisch deterministisch ist, sodass Sie das Universum durch Drücken des Knopfes nicht wirklich teilen, sondern nur eine Aktion ausführten, die seit Anbeginn der Zeiten vorherbestimmt war. Wie närrisch auch immer Sie sich beim Drücken des roten Knopfes fühlen und unabhängig vom Ergebnis wünschen wir von APOD einen lustigen 1. April!

Zur Originalseite

Das Universum färben

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: unbekannt

Beschreibung: Es ist sicher lustig, das Universum zu färben. Wenn Ihnen das Spaß macht, nehmen Sie vorläufig diese berühmte astronomische Illustration als Ersatz. Sie, Ihre Freunde, Eltern oder Kinder können es ausdrucken oder sogar digital ausmalen. Dabei interessiert Sie vielleicht, dass obwohl diese Illustration im Laufe der letzten 100 Jahre an vielen Stellen auftauchte, der tatsächliche Künstler unbekannt ist. Außerdem hat die Arbeit keinen anerkannten Namen – fällt Ihnen ein guter ein? Die Illustration erschien erstmals 1888 in einem Buch von Camille Flammarion und veranschaulicht meist, dass aktuelle Ansichten der Menschheit häufig durch neue Erkenntnisse ersetzt werden.

Zur Originalseite

Animation der Galaxienentwicklung


Videocredit: Donna Cox (AVL NCSA/U. Illinois) et al, GSFC der NASA, AVL, NCSA

Beschreibung: Wie entwickelte sich das Universum aus einem so gleichmäßigen Beginn? Um das zu verstehen, erstellten Quantenkosmologen und die NASA rechnerisch dieses Zeitraffer-Animationsvideo – eine Computersimulation von einem Teil des Universums. Die Simulation von 100 Millionen Lichtjahren beginnt etwa 20 Millionen Jahre nach dem Urknall und läuft bis in die Gegenwart. Nach einem glatten Beginn verwandeln sich Materieklumpen durch die Gravitation in Galaxien, die sofort anfangen, sich zueinander zu bewegen. Bald kondensieren viele von ihnen zu langen Fasern, während andere gewaltsam zu einem großen, heißen Galaxienhaufen verschmelzen. Die Untersuchung möglicher Eigenschaften des Universums durch Simulationen wie diese hilft bei der Konstruktionsentwicklung des James-Webb-Weltraumteleskops, dessen Start derzeit für Ende 2018 geplant ist.

Zur Originalseite

SN Refsdal: Das erste vorhergesagte Supernovabild

Die Kreise im Bild markieren Stellen, an denen eine Supernova auftauchte, nachdem ihr Licht von einer Gravitationslinse in mehrere Bilder aufgespalten wurde.

Bildcredit: NASA, ESA und S. Rodney (JHU) und das FrontierSN-Team; T. Treu (UCLA), P. Kelly (UC Berkeley) und das GLASS-Team; J. Lotz (STScI) und das Frontier Fields Team; M. Postman (STScI) und das CLASH-Team; weiters: Z. Levay (STScI)

Sie ist zurück. Noch nie zuvor wurde die Beobachtung einer Supernova vorhergesagt. Es war ein einzigartiges astronomisches Ereignis und trat im Feld des Galaxienhaufens MACS J1149.5+2223 auf.

Die meisten hellen Flecken im Bild sind Galaxien im Haufen. Die aktuelle Supernova hat die Bezeichnung Supernova Refsdal. Sie ereignete sich nur einmal im fernen Universum, und zwar weit hinter diesem massereichen Galaxienhaufen. Die Gravitation führt dazu, dass sich der Haufen wie eine massereiche Gravitationslinse verhielt. Er spaltete das Bild der Supernova Refsdal in mehrere helle Bilder auf.

Eines dieser Bilder erreichte die Erde vor etwa zehn Jahren. Es ist wahrscheinlich im oberen roten Kreis dargestellt. Leider wurde es verpasst. Vier weitere helle Bilder erreichten im April ihre größte Helligkeit im unteren roten Kreis. Sie sind als erste Einsteinkreuz-Supernova um eine massereiche Galaxie im Haufen verteilt.

Doch da war noch mehr. Untersuchungen zeigten, dass wahrscheinlich noch ein sechstes helles Supernovabild auf dem Weg zur Erde war. Es würde wahrscheinlich im nächsten Jahr ankommen.

Anfang des Monats wurde dieses sechste helle Bild geborgen. Es erschien pünktlich im mittleren roten Kreis, wie es vorhergesagt worden war. Wenn wir solche Bildfolgen untersuchen, verstehen wir besser, wie Materie in Galaxien und Galaxienhaufen verteilt ist. Das führt zu neuen Erkenntnissen, wie schnell das Universum expandiert und auf welche Weise massereiche Sterne explodieren.

Zur Originalseite

Eine Kraft aus dem leeren Raum: der Casimir-Effekt

Eine extrem glatte Kugel befindet sich auf einer welligen, löchrigen Oberfläche. Links ist eine Platte mit Fortsätzen, auf denen die Kugel liegt.

Bildcredit und Bildrechte: Umar Mohideen (U. California at Riverside)

Diese winzige Kugel liefert Hinweise, dass sich das Universum ewig ausdehnt. Sie ist etwas größer als 1/10 mm und bewegt sich auf eine glatte Platte zu. Das ist die Reaktion auf Energieschwankungen im Vakuum des leeren Raumes. Diese Anziehung wird als Casimir-Effekt bezeichnet. Er ist nach dem Entdecker benannt, der vor etwa 60 Jahren verstehen wollte, warum sich zähe Flüssigkeiten wie Mayonnaise so langsam bewegen.

Heute gibt es Hinweise, dass ein Großteil der Energiedichte im Universum eine unbekannte Form hat. Sie wird als Dunkle Energie bezeichnet. Form und Ursprung der Dunklen Energie sind gänzlich unbekannt. Sie wurde aber im Zusammenhang mit Vakuumfluktuation vorhergesagt, ähnlich wie der Casimir-Effekt. Die Dunkle Energie wird auf unbekannte Weise vom Raum selbst erzeugt.

Die gewaltige, rätselhafte Dunkle Energie stößt anscheinend jede Materie durch Gravitation ab. Das führt wahrscheinlich dazu, dass sich das Universum bis in alle Ewigkeit ausdehnt. Die Erforschung der Vakuumenergie hat höchste Priorität, nicht nur um das Universum besser zu verstehen, sondern auch um zu verhindern, dass mechanische Teilchen von Mikromaschinen aneinander kleben.

Zur Originalseite